-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdgl_utils.py
268 lines (205 loc) · 9.62 KB
/
dgl_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import torch
from dgl.dataloading import GraphDataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from dgl_dataset import NASBench101CellDataset
from dgl_model import GCN
import os
import numpy as np
import time
from matplotlib import pyplot as plt
from sklearn.metrics import mean_absolute_error, mean_squared_error, max_error, r2_score
def data_preparation(train_percentage, train_batch_size, val_batch_size, num_arch, graphs=None, labels=None):
# set seed
torch.manual_seed(13)
if graphs == None:
# load graphs from default (generated) dataset
dataset = NASBench101CellDataset(num_arch=num_arch, generate_data=False, import_data=False)
else:
dataset = NASBench101CellDataset(num_arch=num_arch, generate_data=False, import_data=True, graphs=graphs,
labels=labels)
num_examples = len(dataset)
num_train = int(num_examples * train_percentage)
train_sampler = SubsetRandomSampler(torch.arange(num_train))
val_sampler = SubsetRandomSampler(torch.arange(num_train, num_examples))
train_data_loader = GraphDataLoader(dataset, sampler=train_sampler, batch_size=train_batch_size, drop_last=False)
val_data_loader = GraphDataLoader(dataset, sampler=val_sampler, batch_size=val_batch_size, drop_last=False)
return dataset, train_data_loader, val_data_loader
def model_configuration(dataset, num_filters, learning_rate, dropout_probability):
# set seed
torch.manual_seed(42)
model = GCN(dataset.dim_nfeats, num_filters, dropout_probability)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
loss_fn = torch.nn.MSELoss(reduction='mean')
return model, optimizer, loss_fn
class ModelHandler(object):
def __init__(self, model, loss_fn, optimizer):
self.model = model
self.loss_fn = loss_fn
self.optimizer = optimizer
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.model.to(self.device)
self.train_loader = None
self.val_loader = None
self.losses = []
self.val_losses = []
self.total_epochs = 0
self.train_step_fn = self._make_train_step_fn()
self.val_step_fn = self._make_val_step_fn()
def to(self, device):
try:
self.device = device
self.model.to(self.device)
except RuntimeError:
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Couldn't send it to {device}, sending it to {self.device} instead.")
self.model.to(self.device)
def set_loaders(self, train_loader, val_loader=None):
self.train_loader = train_loader
self.val_loader = val_loader
def _make_train_step_fn(self):
def perform_train_step_fn(x, y):
# set model to train mode
self.model.train()
# compute model's predicted output (forward pass)
yhat = self.model(x)
# compute loss
# loss = self.loss_fn(yhat, y)
loss = self.loss_fn(yhat, y.view(-1, 1))
# compute gradients
loss.backward()
# update parameters using gradients and the learning rate
self.optimizer.step()
self.optimizer.zero_grad()
# return loss
return loss.item()
return perform_train_step_fn
def _make_val_step_fn(self):
def perform_val_step_fn(x, y):
# set model to evaluation mode
self.model.eval()
# compute model's predicted output (forward pass)
yhat = self.model(x)
# compute loss
# loss = self.loss_fn(yhat, y)
loss = self.loss_fn(yhat, y.view(-1, 1))
return loss.item()
return perform_val_step_fn
def _process_mini_batches(self, validation=False):
if validation:
data_loader = self.val_loader
step_fn = self.val_step_fn
else:
data_loader = self.train_loader
step_fn = self.train_step_fn
if data_loader is None:
return None
mini_batch_losses = []
for x_batch, y_batch in data_loader:
# print('x_batch', x_batch)
x_batch = x_batch.to(self.device)
y_batch = y_batch.to(self.device)
mini_batch_loss = step_fn(x_batch, y_batch)
mini_batch_losses.append(mini_batch_loss)
loss = np.mean(mini_batch_losses)
return loss
def set_seed(self, seed=42):
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(seed)
np.random.seed(seed)
def train(self, n_epochs, stats_save_dir, model_name, chkpt_save_dir=None, seed=42):
self.set_seed(seed)
# os.makedirs('nas_ea_fa_v2_dgl_model/experiment' + str(experiment), exist_ok=True)
os.makedirs(stats_save_dir, exist_ok=True)
# os.makedirs('dgl_model_train_stats', exist_ok=True)
with open(os.path.join(stats_save_dir, model_name + '.txt'), 'w') as f:
# with open(os.path.join('dgl_model_train_stats', model_name + '.txt'), 'w') as f:
for epoch in range(n_epochs + 1):
tic = time.time()
self.total_epochs += 1
# train using minibatches
loss = self._process_mini_batches(validation=False)
self.losses.append(loss)
# validation
with torch.no_grad(): # no gradients in validation
# evaluate using minibatches
val_loss = self._process_mini_batches(validation=True)
self.val_losses.append(val_loss)
toc = time.time()
print('epoch:', epoch, 'training loss:', loss, 'validation loss:', val_loss,
'time needed:', toc - tic, 'sec')
f.write('epoch: ' + str(epoch) + ' training loss: ' + str(loss) + ' validation loss: ' +
str(val_loss) + ' time needed: ' + str(toc - tic) + ' sec\n')
# if epoch % 10 == 0:
# self.save_checkpoint(os.path.join('dgl_model', 'dgl_model_checkpoint_epoch' + str(epoch) + '.pth'))
if chkpt_save_dir is not None:
self.save_checkpoint(os.path.join(chkpt_save_dir, model_name + '_checkpoint_epoch' + str(epoch) + '.pth'))
def save_checkpoint(self, filename):
# create checkpoint dictionary
checkpoint = {'epoch': self.total_epochs,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'loss': self.losses,
'val_loss': self.val_losses}
# save checkpoint
torch.save(checkpoint, filename)
def load_checkpoint(self, filename):
# load checkpoint dictionary
checkpoint = torch.load(filename)
# restore model and optimizer state
self.model.load_state_dict(checkpoint['model_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
self.total_epochs = checkpoint['epoch']
self.losses = checkpoint['loss']
self.val_losses = checkpoint['val_loss']
def predict(self, x):
# set model to evaluation mode
self.model.eval()
# make prediction
yhat = self.model(x.to(self.device))
# set back to training mode
self.model.train()
return yhat.detach().cpu().numpy()
def evaluate(self, stats_save_dir, model_name):
os.makedirs(stats_save_dir, exist_ok=True)
# os.makedirs('dgl_model_evaluation_stats', exist_ok=True)
predictions = []
labels = []
with torch.no_grad():
for x, y in self.val_loader:
pred_y = self.predict(x) # + 0.5
if len(pred_y) > 1:
predictions.extend(pred_y.squeeze().tolist())
labels.extend(y.tolist())
else:
print(pred_y)
print(y)
print(pred_y[0][0])
print(y.tolist()[0])
predictions.append(pred_y[0][0])
labels.append(y.tolist()[0])
print('MAE:', mean_absolute_error(labels, predictions))
print('MSE:', mean_squared_error(labels, predictions))
print('RMSE:', mean_squared_error(labels, predictions, squared=False))
print('Max error:', max_error(labels, predictions))
print('R2:', r2_score(labels, predictions))
with open(os.path.join(stats_save_dir, model_name + '.txt'), 'w') as f:
# with open(os.path.join('dgl_model_evaluation_stats', model_name + '.txt'), 'w') as f:
f.write('MAE: ' + str(mean_absolute_error(labels, predictions)) + '\n')
f.write('MSE: ' + str(mean_squared_error(labels, predictions)) + '\n')
f.write('RMSE: ' + str(mean_squared_error(labels, predictions, squared=False)) + '\n')
f.write('Max error: ' + str(max_error(labels, predictions)) + '\n')
f.write('R2: ' + str(r2_score(labels, predictions)) + '\n')
def plot_losses(self, stats_save_dir, model_name):
fig = plt.figure(figsize=(10, 4))
plt.plot(self.losses, label='Training Loss', c='b')
plt.plot(self.val_losses, label='Validation Loss', c='r')
plt.yscale('log')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.tight_layout()
plt.savefig(os.path.join(stats_save_dir, model_name))
# plt.savefig(os.path.join('dgl_model_train_stats', model_name))
plt.close()
# return fig