-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenetic_algorithm_naswt_nasbench101.py
151 lines (122 loc) · 7.62 KB
/
genetic_algorithm_naswt_nasbench101.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from nord.neural_nets import BenchmarkEvaluator, NASWT_Evaluator
from nas_101 import ModelSpec, Network
import os
import copy
import time
import numpy as np
from params import EXP_REPEAT_TIMES, POPULATION_SIZE, NUM_GEN, T
from nasbench101_utils_dnc import MAX_CONNECTIONS
from nasbench101_utils_dnc import randomly_sample_architecture, create_nord_architecture, tournament_selection, bitwise_mutation
from performance_evaluation import progress_update, save_performance
from save_individual import save_individual_101_dnc
import argparse
parser = argparse.ArgumentParser(description='NASBench')
parser.add_argument('--module_vertices', default=7, type=int, help='#vertices in graph')
parser.add_argument('--max_edges', default=9, type=int, help='max edges in graph')
parser.add_argument('--available_ops', default=['conv3x3-bn-relu', 'conv1x1-bn-relu', 'maxpool3x3'],
type=list, help='available operations performed on vertex')
parser.add_argument('--stem_out_channels', default=128, type=int, help='output channels of stem convolution')
parser.add_argument('--num_stacks', default=3, type=int, help='#stacks of modules')
parser.add_argument('--num_modules_per_stack', default=3, type=int, help='#modules per stack')
parser.add_argument('--batch_size', default=64, type=int, help='batch size')
parser.add_argument('--epochs', default=100, type=int, help='#epochs of training')
parser.add_argument('--learning_rate', default=0.025, type=float, help='base learning rate')
parser.add_argument('--lr_decay_method', default='COSINE_BY_STEP', type=str, help='learning decay method')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--weight_decay', default=1e-4, type=float, help='L2 regularization weight')
parser.add_argument('--grad_clip', default=5, type=float, help='gradient clipping')
parser.add_argument('--load_checkpoint', default='', type=str, help='Reload model from checkpoint')
parser.add_argument('--num_labels', default=10, type=int, help='#classes')
parser.add_argument('--dataset', default='cifar10', type=str, help='dataset')
args = parser.parse_args(args=[])
def genetic_algorithm_naswt_101():
# Instantiate the evaluators
evaluator = BenchmarkEvaluator()
naswt_evaluator = NASWT_Evaluator()
if not os.path.exists('results_ga_dnc101_naswt_' + str(args.batch_size)):
os.mkdir('results_ga_dnc101_naswt_' + str(args.batch_size))
for exp_repeat_index in range(EXP_REPEAT_TIMES):
start_time = time.time()
folder_name = os.path.join('results_ga_dnc101_naswt_' + str(args.batch_size), 'results' +
str(exp_repeat_index + 1))
if not os.path.exists(folder_name):
os.mkdir(folder_name)
best_val_acc = []
best_test_acc_based_on_val_acc = []
best_naswt_score_based_on_val_acc = []
train_times = []
naswt_calc_times = []
total_train_time = []
total_naswt_calc_time = []
best_naswt_score = []
best_val_acc_based_on_naswt_score = []
best_test_acc_based_on_naswt_score = []
best_test_acc = []
# Randomly sample POPULATION_SIZE architectures with an initial fitness of 0
total_population = []
for _ in range(POPULATION_SIZE):
is_valid_architecture = False
while not is_valid_architecture:
architecture = randomly_sample_architecture()
# check if connection number is ok for nasbench-101
if sum(architecture.connections) <= MAX_CONNECTIONS and architecture.valid_architecture:
total_population.append(architecture)
is_valid_architecture = True
population = copy.deepcopy(total_population)
# evolutionary algorithm
for epoch in range(NUM_GEN*T):
num_arch = 0
tic = time.time()
new_population = []
for i in range(POPULATION_SIZE):
num_arch += 1
individual = copy.deepcopy(tournament_selection(population))
new_individual = bitwise_mutation(individual)
d = create_nord_architecture(new_individual)
val_acc, train_time = evaluator.descriptor_evaluate(d, acc='validation_accuracy')
test_acc, train_time = evaluator.descriptor_evaluate(d, acc='test_accuracy')
arch = ModelSpec(matrix=new_individual.simplified_connection_matrix,
ops=new_individual.simplified_layers)
net = Network(arch, args)
K_matrix, naswt_score, naswt_calc_time = naswt_evaluator.net_evaluate(net=net,
batch_size=args.batch_size,
dataset=args.dataset)
new_individual.fitness = naswt_score
new_individual.val_acc = val_acc
new_individual.test_acc = test_acc
new_individual.train_time = train_time
new_individual.naswt_calc_time = naswt_calc_time
print('experiment:', exp_repeat_index + 1, 'epoch:', epoch + 1, 'num_arch:', num_arch,
'naswt_calc_time:', naswt_calc_time, 'sec')
new_population.append(new_individual)
best_val_acc, best_test_acc_based_on_val_acc, best_naswt_score_based_on_val_acc, best_test_acc, \
best_naswt_score, best_val_acc_based_on_naswt_score, best_test_acc_based_on_naswt_score, train_times, \
naswt_calc_times, total_train_time, total_naswt_calc_time = \
progress_update(val_acc=val_acc, test_acc=test_acc, train_time=train_time, best_val_acc=best_val_acc,
best_test_acc_based_on_val_acc=best_test_acc_based_on_val_acc,
best_test_acc=best_test_acc, train_times=train_times,
total_train_time=total_train_time, fitness='naswt', naswt_score=naswt_score,
naswt_calc_time=naswt_calc_time,
best_naswt_score_based_on_val_acc=best_naswt_score_based_on_val_acc,
best_naswt_score=best_naswt_score,
best_val_acc_based_on_naswt_score=best_val_acc_based_on_naswt_score,
best_test_acc_based_on_naswt_score=best_test_acc_based_on_naswt_score,
naswt_calc_times=naswt_calc_times, total_naswt_calc_time=total_naswt_calc_time)
population = new_population
with open(os.path.join(folder_name, 'population_epoch' + str(epoch + 1) + '.txt'), 'w') as f:
ind_num = 0
for ind in population:
ind_num += 1
save_individual_101_dnc(f, ind, ind_num, 'naswt')
toc = time.time()
print('experiment index:', exp_repeat_index+1, 'time needed for epoch ' + str(epoch+1) + ':', toc - tic,
'sec')
end_time = time.time()
save_performance(folder_name, exp_repeat_index, start_time, end_time, best_val_acc,
best_test_acc_based_on_val_acc, best_test_acc, train_times, total_train_time,
'naswt', best_naswt_score_based_on_val_acc, best_naswt_score,
best_val_acc_based_on_naswt_score, best_test_acc_based_on_naswt_score,
naswt_calc_times, total_naswt_calc_time)
if __name__ == '__main__':
np.random.seed(42)
genetic_algorithm_naswt_101()