-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenetic_algorithm_naswt_natsbenchtss.py
171 lines (138 loc) · 7.94 KB
/
genetic_algorithm_naswt_natsbenchtss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from nord.neural_nets.natsbench_evaluator import NATSBench_Evaluator
from nord.neural_nets import NASWT_Evaluator
import os
import copy
import time
import numpy as np
from params import EXP_REPEAT_TIMES, POPULATION_SIZE, NUM_GEN, T
from natsbenchtss_utils_dnc import randomly_sample_architecture, create_nord_architecture, tournament_selection, \
bitwise_mutation
from performance_evaluation import progress_update, save_performance
from save_individual import save_individual_201_dnc
from nord.utils import DATA_ROOT
from nats_bench import create
from xautodl.models import get_cell_based_tiny_net
def genetic_algorithm_naswt_201():
# Initialise NATS-Bench API
NATSBENCH_NAME = "NATS-tss-v1_0-3ffb9-simple"
NATSBENCH_TFRECORD = os.path.join(DATA_ROOT, NATSBENCH_NAME)
filepath = NATSBENCH_TFRECORD
api = create(os.path.join(filepath, NATSBENCH_NAME), "tss", fast_mode=True, verbose=False)
# Instantiate the evaluators
natsbench_evaluator = NATSBench_Evaluator()
naswt_evaluator = NASWT_Evaluator()
# NASWT config
batch_size = 32
dataset = 'cifar10'
if not os.path.exists('results_ga_dnc201_naswt_' + str(batch_size)):
os.mkdir('results_ga_dnc201_naswt_' + str(batch_size))
for exp_repeat_index in range(EXP_REPEAT_TIMES):
start_time = time.time()
folder_name = os.path.join('results_ga_dnc201_naswt_' + str(batch_size), 'results' + str(exp_repeat_index + 1))
if not os.path.exists(folder_name):
os.mkdir(folder_name)
best_val_acc = []
best_test_acc_based_on_val_acc = []
best_naswt_score_based_on_val_acc = []
train_times = []
naswt_calc_times = []
total_train_time = []
total_naswt_calc_time = []
best_naswt_score = []
best_val_acc_based_on_naswt_score = []
best_test_acc_based_on_naswt_score = []
best_test_acc = []
# Randomly sample POPULATION_SIZE architectures with an initial fitness of 0
total_population = []
for _ in range(POPULATION_SIZE):
is_valid_architecture = False
while not is_valid_architecture:
architecture = randomly_sample_architecture()
if architecture.valid_architecture:
d = create_nord_architecture(architecture)
# evaluate architecture
invalid_nas201 = False
try:
val_acc, test_acc, train_time = natsbench_evaluator.descriptor_evaluate(d, metrics=[
'validation_accuracy',
'test_accuracy',
'time_cost'])
except ValueError:
# print('Invalid architecture (not added in population)')
# print(d)
# print(natsbench_evaluator._descriptor_to_nasnet(d))
invalid_nas201 = True
if not invalid_nas201:
total_population.append(architecture)
is_valid_architecture = True
population = copy.deepcopy(total_population)
# evolutionary algorithm
for epoch in range(NUM_GEN * T):
num_arch = 0
tic = time.time()
new_population = []
for i in range(POPULATION_SIZE):
num_arch += 1
individual = copy.deepcopy(tournament_selection(population))
new_individual = bitwise_mutation(individual)
d = create_nord_architecture(new_individual)
# evaluate architecture
train_loss, val_loss, test_loss, train_acc, val_acc, test_acc, latency, train_time = \
natsbench_evaluator.descriptor_evaluate(d, metrics=['train_loss',
'validation_loss',
'test_loss',
'train_accuracy',
'validation_accuracy',
'test_accuracy',
'latency',
'time_cost'])
nasnet_arch = natsbench_evaluator._descriptor_to_nasnet(d)
natsbench_arch_index = api.query_index_by_arch(nasnet_arch)
config = api.get_net_config(natsbench_arch_index, dataset + '-valid')
net = get_cell_based_tiny_net(config)
K_matrix, naswt_score, naswt_calc_time = naswt_evaluator.net_evaluate(net=net, batch_size=batch_size,
dataset=dataset)
new_individual.fitness = naswt_score
new_individual.val_acc = val_acc
new_individual.test_acc = test_acc
new_individual.train_time = train_time
new_individual.naswt_calc_time = naswt_calc_time
new_individual.train_loss = train_loss
new_individual.val_loss = val_loss
new_individual.test_loss = test_loss
new_individual.train_acc = train_acc
new_individual.latency = latency
print('experiment:', exp_repeat_index + 1, 'epoch:', epoch + 1, 'num_arch:', num_arch,
'naswt_calc_time:', naswt_calc_time, 'sec')
new_population.append(new_individual)
best_val_acc, best_test_acc_based_on_val_acc, best_naswt_score_based_on_val_acc, best_test_acc, \
best_naswt_score, best_val_acc_based_on_naswt_score, best_test_acc_based_on_naswt_score, train_times, \
naswt_calc_times, total_train_time, total_naswt_calc_time = \
progress_update(val_acc=val_acc, test_acc=test_acc, train_time=train_time, best_val_acc=best_val_acc,
best_test_acc_based_on_val_acc=best_test_acc_based_on_val_acc,
best_test_acc=best_test_acc, train_times=train_times,
total_train_time=total_train_time, fitness='naswt', naswt_score=naswt_score,
naswt_calc_time=naswt_calc_time,
best_naswt_score_based_on_val_acc=best_naswt_score_based_on_val_acc,
best_naswt_score=best_naswt_score,
best_val_acc_based_on_naswt_score=best_val_acc_based_on_naswt_score,
best_test_acc_based_on_naswt_score=best_test_acc_based_on_naswt_score,
naswt_calc_times=naswt_calc_times, total_naswt_calc_time=total_naswt_calc_time)
population = new_population
with open(os.path.join(folder_name, 'population_epoch' + str(epoch + 1) + '.txt'), 'w') as f:
ind_num = 0
for ind in new_population:
ind_num += 1
save_individual_201_dnc(f, ind, ind_num, 'naswt')
toc = time.time()
print('experiment index:', exp_repeat_index + 1, 'time needed for epoch ' + str(epoch + 1) + ':', toc - tic,
'sec')
end_time = time.time()
save_performance(folder_name, exp_repeat_index, start_time, end_time, best_val_acc,
best_test_acc_based_on_val_acc, best_test_acc, train_times, total_train_time,
'naswt', best_naswt_score_based_on_val_acc, best_naswt_score,
best_val_acc_based_on_naswt_score, best_test_acc_based_on_naswt_score,
naswt_calc_times, total_naswt_calc_time)
if __name__ == '__main__':
np.random.seed(42)
genetic_algorithm_naswt_201()