-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathacc_overlap_eval.py
436 lines (355 loc) · 19.3 KB
/
acc_overlap_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import sys
sys.path.append("/mnt/data/liminchong/BiLD")
import deepspeed
from config import *
from utils import *
from prompter import Prompter
from tokenize_functions import *
from distillation import Distillation
from compressalign import CompressAlign
from benchmarking.evaluation import evaluation_func
from ds_utils import get_train_ds_config
from trainers.custom_trainer import *
from callbacks import PeftCallback
from compression.params_reuse import CompressedBloom
from train import log2file
def top1_acc(fp_results, test_results):
assert len(fp_results) == len(test_results)
total_input_token_num = 0
total_input_token_acc = 0
total_output_token_num = 0
total_output_token_acc = 0
for idx, fp_item in enumerate(fp_results):
test_item = test_results[idx]
assert fp_item['id'] == test_item['id']
total_input_token_num += len(fp_item['input_ids'])
total_output_token_num += len(fp_item['output_ids'])
fp_input_pred = [item[0][0] for item in fp_item['input_logits']]
test_input_pred = [item[0][0] for item in test_item['input_logits']]
total_input_token_acc += (np.array(fp_input_pred) == np.array(test_input_pred)).sum()
fp_output_pred = [item[0][0] for item in fp_item['output_logits']]
test_output_pred = [item[0][0] for item in test_item['output_logits']]
total_output_token_acc += (np.array(fp_output_pred) == np.array(test_output_pred)).sum()
return total_input_token_acc/total_input_token_num * 100, total_output_token_acc/total_output_token_num * 100
def topk_overlap(fp_results, test_results, k=32):
assert len(fp_results) == len(test_results)
assert k <= len(fp_results[0]['input_logits'][0])
total_input_logits_num = 0
total_input_logit_overlap = 0
total_output_logits_num = 0
total_output_logits_overlap = 0
for idx, fp_item in enumerate(fp_results):
test_item = test_results[idx]
total_input_logits_num += len(fp_item['input_ids']) * k
total_output_logits_num += len(fp_item['output_ids']) * k
input_overlap = 0
for token_idx in range(len(fp_item['input_ids'])):
fp_input_topk_logits = [item[0] for item in fp_item['input_logits'][token_idx][:k]]
test_input_topk_logits = [item[0] for item in test_item['input_logits'][token_idx][:k]]
input_overlap += len(list(set(fp_input_topk_logits) & set(test_input_topk_logits)))
total_input_logit_overlap += input_overlap
output_overlap = 0
for token_idx in range(len(fp_item['output_ids'])):
fp_output_topk_logits = [item[0] for item in fp_item['output_logits'][token_idx][:k]]
test_output_topk_logits = [item[0] for item in test_item['output_logits'][token_idx][:k]]
output_overlap += len(list(set(fp_output_topk_logits) & set(test_output_topk_logits)))
total_output_logits_overlap += output_overlap
return total_input_logit_overlap / total_input_logits_num * 100, total_output_logits_overlap / total_output_logits_num * 100
# input_acc, output_acc = top1_acc(fp_results, test_results)
# print('top1 acc', output_acc)
# for k in [8, 16, 32]:
# input_overlap, output_overlap = topk_overlap(fp_results, test_results, k=k)
# print('top {} overlap'.format(k), output_overlap)
def load_model_and_tokenizer(args):
if args.save_teacher_data:
model_path = args.teacher_model_path
else:
model_path = args.student_model_path
model = AutoModelForCausalLM.from_pretrained(model_path,
low_cpu_mem_usage=True,
trust_remote_code=True,
torch_dtype=torch.float16 if args.fp16 else torch.bfloat16)
world_size = int(os.environ.get("WORLD_SIZE", 1))
ds_config = {
"replace_with_kernel_inject": True,
"tensor_parallel": {
"enabled": True,
"tp_size": world_size
},
}
if args.deepspeed:
ds_engine = deepspeed.init_inference(
model,
dtype=torch.half,
config=ds_config,
)
model = ds_engine.module
if args.tokenizer_name == 'qwen':
tokenizer = AutoTokenizer.from_pretrained(model_path,
max_length=CONFIG['max_len'],
pad_token='<|endoftext|>',
eos_token='<|endoftext|>',
padding_side='left',
trust_remote_code=True)
else:
tokenizer = AutoTokenizer.from_pretrained(model_path,
max_length=CONFIG['max_len'],
padding_side="left",
truncation_side="left",
trust_remote_code=True,
use_fast=True)
tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True
if args.tokenizer_name in ['llama', 'baichuan', 'cpm']:
tokenizer.bos_token_id = 1
tokenizer.eos_token_id = 2
tokenizer.pad_token_id = 0
tokenizer.unk_token_id = 0
if args.tokenizer_name == 'chatglm':
tokenizer.bos_token_id = 1
tokenizer.eos_token_id = 2
tokenizer.pad_token_id = 2
tokenizer.unk_token_id = 0
if args.tokenizer_name == 'bloom':
tokenizer.bos_token_id = 1
tokenizer.eos_token_id = 2
tokenizer.pad_token_id = 3
tokenizer.unk_token_id = 0
tokenizer.add_special_tokens = False
return model, tokenizer
def load_eval_dataset(args):
val_file_names = args.val_data
val_file_names = glob.glob(args.val_data+args.val_files_pattern, recursive=True)
eval_dataset = load_dataset("json",
data_files=val_file_names,
split='train',
streaming=args.streaming,
)
sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset,
batch_size=args.eval_batch_size,
sampler=sampler)
return eval_dataloader
def save_teacher_data(args):
teacher_data = []
# teacher_path = '/mnt/liminchong/results/en_results/teacher/Qwen1.5-0.5B_all/checkpoint-10496'
model, tokenizer = load_model_and_tokenizer(args)
model.eval()
eval_dataloader = load_eval_dataset(args)
for examples in tqdm(eval_dataloader, desc='evaluating', disable=args.local_rank not in [0, -1]):
examples_tokenized = tokenizer(examples["input"], padding=True, truncation=True, return_tensors='pt')
input_ids = examples_tokenized["input_ids"]
attention_mask = examples_tokenized["attention_mask"]
if torch.cuda.device_count() > 0:
input_ids = input_ids.to(torch.cuda.current_device())
attention_mask = attention_mask.to(torch.cuda.current_device())
with torch.no_grad():
outputs = model.generate(input_ids=input_ids,
attention_mask=attention_mask,
output_scores=True,
output_logits=True,
return_dict_in_generate=True,
pad_token_id=tokenizer.pad_token_id,
do_sample=False,
repetition_penalty=1.2,
min_new_tokens=1,
max_new_tokens=1024)
sequences = outputs.sequences # tuple, len=1, sub element: torch.Size([51])
logits = torch.cat(outputs.logits, dim=0) # tuple, len=8 (answer length), sub element: torch.Size([1, 151936])
# print(f'sequences len: {len(sequences)}\n')
# print(f'logits len: {len(logits)}\n')
# print(f'sequences[0].shape: {sequences[0].shape}\n')
# print(f'logits.shape: {logits.shape}\n')
for i in range(sequences.size(0)):
cur_logits_topk, cur_topk_pos = torch.topk(logits, k=args.save_logits_len, dim=-1)
cur_teacher_data = {
"task_name": examples["task_name"][i],
"full_answer": sequences[i].cpu(),
"logits": cur_logits_topk.cpu(),
"logits_position": cur_topk_pos.cpu()
}
# print(f'cur_logits_topk.shape: {cur_logits_topk.shape}\n')
# print(f'cur_topk_pos.shape: {cur_topk_pos.shape}\n')
# exit()
teacher_data.append(cur_teacher_data)
torch.save(teacher_data, os.path.join(args.teacher_save_path, f'{args.model_name}.pt'))
return
def count_common_elements(A: torch.tensor, B: torch.tensor):
from collections import Counter
# 将 tensor 转换为 list
A_list = A.tolist()
B_list = B.tolist()
# 统计每个列表中元素出现的次数
A_count = Counter(A_list)
B_count = Counter(B_list)
# 计算相同元素的总数
common_count = 0
for elem in A_count:
if elem in B_count:
common_count += min(A_count[elem], B_count[elem])
return common_count
def eval_acc_overlap(args):
# teacher_data = torch.load(os.path.join(args.teacher_save_path, f'{args.model_name}.pt'))
top_1_acc = 0
top_k_overlap = 0
model, tokenizer = load_model_and_tokenizer(args)
model.eval()
teacher_data = torch.load(os.path.join(args.teacher_save_path, f'{args.model_name}.pt'))
teacher_data = teacher_data
print(f"successfully load {os.path.join(args.teacher_save_path, f'{args.model_name}.pt')}")
data_num = float(len(teacher_data))
print(f'data_num: {data_num}')
for teacher_examples in tqdm(teacher_data, desc='evaluating', disable=args.local_rank not in [0, -1]):
answer_len = teacher_examples["logits_position"].shape[0]
# print(f'answer_len: {answer_len}')
# print(f'task_name: {teacher_examples["task_name"]}')
# print(f'full_answer len: {teacher_examples["full_answer"].shape}')
# print(f'logits shape: {teacher_examples["logits"].shape}')
# print(f'logits pos shape: {teacher_examples["logits_position"].shape}')
input_ids = teacher_examples["full_answer"].unsqueeze(0)
attention_mask = torch.ones_like(input_ids)
if torch.cuda.device_count() > 0:
input_ids = input_ids.to(torch.cuda.current_device())
attention_mask = attention_mask.to(torch.cuda.current_device())
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
# print(f'raw logits shape: {outputs.logits.shape}')
logits = outputs.logits.squeeze(0)
logits = logits[-(answer_len + 1):-1, :]
# print(f'logits shape: {logits.shape}')
pos_t = teacher_examples["logits_position"].to(torch.cuda.current_device())
for i in range(args.eval_batch_size):
logits_s, pos_s = torch.topk(logits, k=args.overlap_topk, dim=-1)
# calulate top-1 acc
top_1_pos_s = pos_s[:, 0]
# print(f'top_1_pos_s.shape: {top_1_pos_s.shape}')
# print(f'top_1_pos_s: {top_1_pos_s}')
# print(f'full_answer: {teacher_examples["full_answer"]}')
# print('#######################')
# print(f'top_1_pos_s, skip: {" ".join(tokenizer.batch_decode(top_1_pos_s, skip_special_tokens=True))}')
# print('#######################')
# print(f'top_1_pos_s, no skip: {" ".join(tokenizer.batch_decode(top_1_pos_s, skip_special_tokens=False))}')
# print('#######################')
# print(f'full_answer, skip: {" ".join(tokenizer.batch_decode(teacher_examples["full_answer"], skip_special_tokens=True))}')
# print('#######################')
# print(f'full_answer, no skip: {" ".join(tokenizer.batch_decode(teacher_examples["full_answer"], skip_special_tokens=False))}')
# print('#######################')
# print('\n\n')
top_1_pos_t = pos_t[:, 0]
equal_top_1 = (top_1_pos_s == top_1_pos_t)
equal_top_1_count = torch.sum(equal_top_1).item()
top_1_acc += equal_top_1_count / float(answer_len)
# print(f'top_1_pos_s: {top_1_pos_s}')
# print(f'top_1_pos_t: {top_1_pos_t}')
# print(f'single top-1 acc: {equal_top_1_count / float(answer_len)}')
# calculate top-k overlap
top_k_pos_s = pos_s[:, :args.overlap_topk]
top_k_pos_t = pos_t[:, :args.overlap_topk]
overlap_ratio = 0
for j in range(answer_len):
top_k_pos_s_unique = top_k_pos_s[j, :]
top_k_pos_t_unique = top_k_pos_t[j, :]
overlap_count = count_common_elements(top_k_pos_s_unique, top_k_pos_t_unique)
overlap_ratio += (overlap_count / float(args.overlap_topk))
top_k_overlap += (overlap_ratio / float(answer_len))
# print(f'top_k_pos_s: {top_k_pos_s}')
# print(f'top_k_pos_t: {top_k_pos_t}')
# print(f'single top_k_overlap: {overlap_ratio}')
top_1_acc /= data_num
top_k_overlap /= data_num
top_1_acc *= 100
top_k_overlap *= 100
print(f'top-1 acc: {top_1_acc}')
print(f'top-{args.overlap_topk} overlap: {top_k_overlap}')
log2file(args, f'top-1 acc: {top_1_acc}\ntop-{args.overlap_topk} overlap: {top_k_overlap}')
return top_1_acc, top_k_overlap
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='calculate top-1 acc and top-p overlap')
parser.add_argument('-output_dir', '--output_dir', type=str, \
default=CONFIG['output_dir'], help='output_dir')
parser.add_argument('-acc_step',
'--accumulation_steps',
default=CONFIG['accumulation_steps'],
type=int,
required=False)
parser.add_argument('-epochs', '--epochs', type=int, \
default=CONFIG['epochs'], help='training epochs')
parser.add_argument('-max_steps', '--max_steps', type=int, \
default=CONFIG['max_steps'], help='training max_steps')
parser.add_argument('-max_len', '--max_len', type=int, \
default=CONFIG['max_len'], help='training max_len')
parser.add_argument('-save_steps', '--save_steps', type=int, \
default=CONFIG['save_steps'], help='save_steps')
parser.add_argument('-eval_steps', '--eval_steps', type=int, \
default=CONFIG['eval_steps'], help='eval_steps')
parser.add_argument('-max_new_tokens', '--max_new_tokens', type=int, \
default=64, help='max_new_tokens')
parser.add_argument('-num_beams', '--num_beams', type=int, \
default=CONFIG['num_beams'], help='num_beams')
parser.add_argument('-lora_r', '--lora_r', type=int, \
default=LORA_CONFIG['r'], help='lora r')
parser.add_argument('-lr', '--learning_rate', type=float, \
default=CONFIG['learning_rate'], help='learning rate')
parser.add_argument('-alpha', '--alpha', type=float, \
default=CONFIG['alpha'], help='weight of distillation loss')
parser.add_argument('-temperature', '--temperature', type=float, \
default=CONFIG['temperature'], help='temperature for CE distillation loss')
parser.add_argument('-v_data','--val_data', type=str, \
default=CONFIG['val_data'], help='the data used for evaluation')
parser.add_argument('-t_data','--train_data', type=str, \
default=CONFIG['train_data'], help='the data used for instructing tuning')
parser.add_argument('-p_data', '--pretrain_data', type=str, \
default=CONFIG['pretrain_data'], help='the data used for pretraining')
parser.add_argument('--local_rank', default=-1, type=int,\
help='node rank for distributed training')
parser.add_argument('--master_port', default="29501", type=str,\
help='master_port')
parser.add_argument('--model_name', type=str, required=True,\
default=CONFIG['model_name'], help='the name of target llm model')
parser.add_argument('--tokenizer_name', type=str, required=False,\
default='', help='the name of target llm tokenizer')
parser.add_argument('--teacher_model_path', type=str, required=False,\
default=CONFIG['model_path'], help='the folder contains model weights')
parser.add_argument('--student_model_path', type=str, required=False,\
default=CONFIG['student_model_path'], help='the folder contains student model weights')
parser.add_argument('--template_name', type=str, \
default='alpaca_short', help='instruct template')
parser.add_argument('--loss_type', type=str, \
default=CONFIG['loss_type'], help='loss type')
parser.add_argument('--deepspeed', type=str, \
default=CONFIG['deepspeed_config'], help='deepspeed config file path')
parser.add_argument('-fp16', '--fp16', action='store_true', \
default=False, help='use fp16')
parser.add_argument('-streaming', '--streaming', action='store_true',default=False)
parser.add_argument('--train_files_pattern', '-train_files_pattern', type=str, default='//*.jsonl')
parser.add_argument('--val_files_pattern', '-val_files_pattern', type=str, default='//*.jsonl')
parser.add_argument('-output_file', '--output_file',default="output.log")
parser.add_argument('-save_teacher_data', '--save_teacher_data', action='store_true', \
default=False, help='save teacher logits')
parser.add_argument('-teacher_save_path', '--teacher_save_path', type=str, \
help='the path to save teacher logits')
parser.add_argument('-save_logits_len', '--save_logits_len', type=int, default=1024)
parser.add_argument('-overlap_topk', '--overlap_topk', type=int, default=32)
parser.add_argument('-num_workers', '--num_workers', type=int, \
default=12, help='number of workers')
set_random_seed(42)
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
args.output_file = os.path.join(args.output_dir, "logits_eval.txt")
if args.tokenizer_name == '':
args.tokenizer_name = args.model_name
args_dict = vars(args)
for k, v in args_dict.items():
CONFIG[k] = v
LORA_CONFIG['r'] = args.lora_r
world_size = int(os.environ.get("WORLD_SIZE", 1))
CONFIG['world_size'] = world_size
if args.deepspeed:
deepspeed.init_distributed("nccl")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
if args.local_rank in [0, -1]:
print(CONFIG)
datasets.config.IN_MEMORY_MAX_SIZE = 128 * 1024 * 1024
if args.save_teacher_data:
save_teacher_data(args)
else:
eval_acc_overlap(args)