-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
497 lines (466 loc) · 23.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
# -- coding: utf-8 --**
from config import *
from utils import *
from prompter import Prompter
from tokenize_functions import *
from benchmarking.evaluation import evaluation_func
from ds_utils import get_train_ds_config
from trainers.custom_trainer import *
def get_paramsgroup(model):
no_decay = ['bias', 'LayerNorm.weight']
params = []
warmup_params = []
for name, param in model.named_parameters():
# if id(param) in frozen_params:
# continue
lr = CONFIG['learning_rate']
weight_decay = 0
if not any(nd in name for nd in no_decay):
weight_decay = 1e-4
params.append(
{
'params': param,
'lr': lr,
'weight_decay': weight_decay
}
)
return params
def log2file(args, msg:str):
if args.output_predict:
f = open(args.output_file, 'a')
f.write(str(msg))
f.write('\n')
f.close()
def eval_collate_fn(batch):
# padding=left, labels are kept at the last
labels_len = [(torch.LongTensor(item['labels']) != -100).long().sum() for item in batch]
origin_input_ids = [item['input_ids'][:-labels_len[idx]] for idx,item in enumerate(batch)]
origin_label_ids = [item['input_ids'][-labels_len[idx]:] for idx,item in enumerate(batch)]
input_strs = CONFIG['tokenizer'].batch_decode(origin_input_ids,
skip_special_tokens=True)
labels = CONFIG['tokenizer'].batch_decode(origin_label_ids,
skip_special_tokens=True)
ret = {}
ret['labels'] = labels
ret['task_name'] = [batch[i]['task_name'] for i in range(len(batch))]
ret['response_split'] = [batch[i]['response_split'] for i in range(len(batch))]
inputs = CONFIG['tokenizer'](input_strs,
return_tensors="pt",
padding='longest')
ret['input_ids'] = inputs['input_ids']
ret['attention_mask'] = inputs['attention_mask']
return ret
def response_generation(
args,
model,
data_points,
):
input_ids = data_points["input_ids"]
attention_mask = data_points['attention_mask']
if torch.cuda.device_count() > 0:
input_ids = input_ids.to(torch.cuda.current_device())
attention_mask = attention_mask.to(torch.cuda.current_device())
# return ['?'] * len(prompts)
# print0(CONFIG['tokenizer'].batch_decode(input_ids))
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
return_dict_in_generate=True,
output_scores=True,
min_new_tokens=1,
max_new_tokens=args.max_new_tokens,
do_sample=False,
eos_token_id=CONFIG['tokenizer'].eos_token_id,
pad_token_id=CONFIG['tokenizer'].pad_token_id
)
s = generation_output.sequences
s = s[:, attention_mask.shape[-1]:]
output = CONFIG['tokenizer'].batch_decode(s, skip_special_tokens=True)
return output
def main(args):
# prepare model
if args.tokenizer_name == 'qwen':
tokenizer = AutoTokenizer.from_pretrained(
args.model_path,
max_length=CONFIG['max_len'],
pad_token='<|endoftext|>',
eos_token='<|endoftext|>',
padding_side='left',
trust_remote_code=True
)
else:
tokenizer = AutoTokenizer.from_pretrained(args.model_path,
max_length=CONFIG['max_len'],
padding_side="left",
truncation_side="left",
trust_remote_code=True,
use_fast=True)
tokenizer.deprecation_warnings["Asking-to-pad-a-fast-tokenizer"] = True
if args.tokenizer_name in ['llama', 'baichuan', 'cpm']:
tokenizer.bos_token_id = 1
tokenizer.eos_token_id = 2
tokenizer.pad_token_id = 0
tokenizer.unk_token_id = 0
if args.tokenizer_name == 'chatglm':
tokenizer.bos_token_id = 1
tokenizer.eos_token_id = 2
tokenizer.pad_token_id = 2
tokenizer.unk_token_id = 0
if args.tokenizer_name == 'bloom':
tokenizer.bos_token_id = 1
tokenizer.eos_token_id = 2
tokenizer.pad_token_id = 3
tokenizer.unk_token_id = 0
print('bos token id {} eos token id {} pad token id {}'.format(
tokenizer.bos_token_id,
tokenizer.eos_token_id,
tokenizer.pad_token_id
)
)
tokenizer.add_special_tokens = False
prompter = Prompter(args.template_name)
CONFIG['tokenizer'] = tokenizer
CONFIG['prompter'] = prompter
model_dtype = torch.float16 if args.fp16 else torch.bfloat16
model = AutoModelForCausalLM.from_pretrained(args.model_path,
low_cpu_mem_usage=True,
trust_remote_code=True,
torch_dtype=model_dtype
)
if args.gradient_checkpointing:
model.gradient_checkpointing_enable()
# prepare data
training_flags = args.instruct_tuning or args.pretrain
train_file_names = args.train_data
val_file_names = args.val_data
world_size = int(os.environ.get("WORLD_SIZE", 1))
batched = True
tok_func = functools.partial(generate_and_tokenize_prompt,
train_on_input=args.train_on_input,
batched=batched)
if os.path.isdir(args.val_data):
val_file_names = glob.glob(args.val_data+args.val_files_pattern, recursive=True)
random.shuffle(val_file_names)
eval_dataset = load_dataset("json",
data_files=val_file_names,
split='train',
streaming=args.streaming,
)
if args.streaming:
eval_dataset = eval_dataset.shuffle(seed=42, buffer_size=100000)\
.map(
tok_func,
batched=batched,
)
eval_dataset_features = list(list(eval_dataset.take(1))[0].keys())
else:
eval_dataset = eval_dataset.shuffle(seed=42)\
.map(
tok_func,
batched=batched,
batch_size=4096,
num_proc=os.cpu_count()//world_size
)
eval_dataset_features = list(eval_dataset.features.keys())
if training_flags:
if os.path.isdir(args.train_data):
train_file_names = glob.glob(args.train_data+args.train_files_pattern, recursive=True)
random.shuffle(train_file_names)
train_dataset = load_dataset("json",
data_files=train_file_names,
split='train',
streaming=args.streaming)
if args.streaming:
column_names = list(list(train_dataset.take(1))[0].keys())
if 'weights' in column_names:
column_names.remove('weights')
train_dataset = train_dataset.shuffle(seed=42, buffer_size=100000)\
.map(
tok_func,
batched=batched,
remove_columns=column_names
)
else:
column_names = list(train_dataset.features)
train_dataset = train_dataset.shuffle(seed=42)\
.map(
tok_func,
batched=batched,
batch_size=4096,
num_proc=os.cpu_count()//world_size,
remove_columns=column_names
)
collate_fn = DataCollatorForSeq2Seq(CONFIG['tokenizer'],
pad_to_multiple_of=8,
return_tensors="pt",
padding='longest')
if training_flags:
training_ds_config = get_train_ds_config(
offload=args.offload,
stage=args.stage,
enable_hybrid_engine=False,
inference_tp_size=CONFIG['world_size'],
max_out_tokens=1024
)
training_args = Seq2SeqTrainingArguments(
output_dir=args.output_dir,
per_device_train_batch_size=args.micro_batch_size,
gradient_accumulation_steps=args.accumulation_steps,
warmup_steps=CONFIG['warmup_steps'],
num_train_epochs=args.epochs,
max_steps=args.max_steps,
learning_rate=args.learning_rate,
fp16=args.fp16,
optim="adamw_torch",
lr_scheduler_type=args.lr_scheduler,
max_grad_norm=1.0,
adam_beta1=0.9,
adam_beta2=0.95,
weight_decay=1e-4,
torch_compile=True if torch.__version__ >= "2" and args.deepspeed else False,
torch_compile_mode='default' if torch.__version__ >= "2" and args.deepspeed else None,
bf16=args.bf16,
logging_steps=10,
remove_unused_columns=False,
log_on_each_node=True,
disable_tqdm=False,
evaluation_strategy="steps",
save_strategy="epoch",
eval_steps=args.eval_steps,
load_best_model_at_end=False,
save_steps = args.save_steps,
save_total_limit=10,
report_to='all',
dataloader_num_workers=os.cpu_count(),
deepspeed=training_ds_config if args.deepspeed else None,
ddp_find_unused_parameters=False
)
if args.distil:
print0('using Trainer: CustomTrainerForDistillation')
trainer = CustomTrainerForDistillation(
config=CONFIG,
teacher_model_path=args.teacher_model_path,
temperature=args.temperature,
model=model,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=CONFIG['tokenizer'],
args=training_args,
data_collator=collate_fn,
)
else:
print0('using Trainer: CustomTrainerForSFT')
trainer = CustomTrainerForSFT(
model=model,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=CONFIG['tokenizer'],
args=training_args,
data_collator=collate_fn,
)
if hasattr(trainer.accelerator, 'dataloader_config'):
trainer.accelerator.dataloader_config.dispatch_batches=False
else:
trainer.accelerator.dispatch_batches=False
if args.resume_from_checkpoint:
trainer.train(resume_from_checkpoint=args.resume_from_checkpoint)
else:
trainer.train()
if args.test:
model.eval()
if args.lora_weights or args.lora:
model = model.merge_and_unload()
model.train(False)
if model.device == torch.device('cpu') and torch.cuda.device_count() > 0:
model = model.to(torch.cuda.current_device())
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
# not support bloom
# model = BetterTransformer.transform(model)
world_size = int(os.environ.get("WORLD_SIZE", 1))
ds_config = {
"replace_with_kernel_inject": True,
"tensor_parallel": {
"enabled": True,
"tp_size": world_size
},
}
if args.deepspeed and not training_flags:
ds_engine = deepspeed.init_inference(
model,
dtype=torch.half,
config=ds_config,
)
model = ds_engine.module
# features = list(eval_dataset.features.keys())
features = eval_dataset_features
features.remove('input_ids')
features.remove('attention_mask')
features.remove('labels')
features.remove('task_name')
features.remove('response_split')
eval_dataset = eval_dataset.remove_columns(features)
sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset,
batch_size=args.eval_batch_size,
collate_fn=eval_collate_fn,
# sampler=sampler,
)
labels = {}
predicts = {}
for examples in tqdm(eval_dataloader, desc='evaluating', \
disable=args.local_rank not in [0, -1]):
outputs = response_generation(args, model, examples)
# if args.local_rank in [0, -1]:
for idx, label in enumerate(examples['labels']):
task_name = examples['task_name'][idx]
response_split = examples['response_split'][idx]
if labels.get(task_name) is None:
labels[task_name] = []
if predicts.get(task_name) is None:
predicts[task_name] = []
if response_split != '':
labels[task_name].append(label.split(response_split)[-1])
predicts[task_name].append(outputs[idx].split(response_split)[-1])
else:
labels[task_name].append(label)
predicts[task_name].append(outputs[idx])
# calc metrics
all_metrics = {}
for task_name in labels.keys():
res = evaluation_func(task_name, labels[task_name], predicts[task_name])
all_metrics[res['task_name']] = res['result']
if args.local_rank in [0, -1]:
print(res)
if args.local_rank in [0, -1]:
log2file(args, json.dumps(all_metrics, sort_keys=True))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='train/eval a model')
parser.add_argument('-bsz', '--batch_size', type=int, \
default=CONFIG['batch_size'], help='global batch size')
parser.add_argument('-m_bsz', '--micro_batch_size', type=int, \
default=CONFIG['micro_batch_size'], help='per gpu batch size')
parser.add_argument('-e_bsz', '--eval_batch_size', type=int, \
default=CONFIG['eval_batch_size'], help='per gpu eval batch size')
parser.add_argument('-output_dir', '--output_dir', type=str, \
default=CONFIG['output_dir'], help='output_dir')
parser.add_argument('-acc_step',
'--accumulation_steps',
default=CONFIG['accumulation_steps'],
type=int,
required=False)
parser.add_argument('-epochs', '--epochs', type=int, \
default=CONFIG['epochs'], help='training epochs')
parser.add_argument('-max_steps', '--max_steps', type=int, \
default=CONFIG['max_steps'], help='training max_steps')
parser.add_argument('-max_len', '--max_len', type=int, \
default=CONFIG['max_len'], help='training max_len')
parser.add_argument('-save_steps', '--save_steps', type=int, \
default=CONFIG['save_steps'], help='save_steps')
parser.add_argument('-eval_steps', '--eval_steps', type=int, \
default=CONFIG['eval_steps'], help='eval_steps')
parser.add_argument('-warmup_steps', '--warmup_steps', type=int, \
default=CONFIG['warmup_steps'], help='warmup_steps')
parser.add_argument('-max_new_tokens', '--max_new_tokens', type=int, \
default=CONFIG['max_new_tokens'], help='max_new_tokens')
parser.add_argument('-num_beams', '--num_beams', type=int, \
default=CONFIG['num_beams'], help='num_beams')
parser.add_argument('-lora_r', '--lora_r', type=int, \
default=LORA_CONFIG['r'], help='lora r')
parser.add_argument('-lora_alpha', '--lora_alpha', type=int, \
default=32, help='lora alpha')
parser.add_argument('-stage', '--stage', type=int, \
default=2, help='deepspeed stage')
parser.add_argument('-lr', '--learning_rate', type=float, \
default=CONFIG['learning_rate'], help='learning rate')
parser.add_argument('-lag_lr', '--lag_learning_rate', type=float, \
default=1.0, help='lag learning rate in lo module')
parser.add_argument('-lr_scheduler', '--lr_scheduler', type=str, \
default='cosine', help='lr_scheduler')
parser.add_argument('-alpha', '--alpha', type=float, \
default=CONFIG['alpha'], help='alpha for l0 module')
parser.add_argument('-loss_weights_1', '--loss_weights_1', type=float, \
default=CONFIG['loss_weights_1'], help='weight of distillation loss')
parser.add_argument('-loss_weights_2', '--loss_weights_2', type=float, \
default=CONFIG['loss_weights_2'], help='weight of distillation loss')
parser.add_argument('-loss_weights_3', '--loss_weights_3', type=float, \
default=CONFIG['loss_weights_3'], help='weight of distillation loss')
parser.add_argument('-temperature', '--temperature', type=float, \
default=CONFIG['temperature'], help='temperature for CE distillation loss')
parser.add_argument('-v_data','--val_data', type=str, \
default=CONFIG['val_data'], help='the data used for evaluation')
parser.add_argument('-t_data','--train_data', type=str, \
default=CONFIG['train_data'], help='the data used for instructing tuning')
parser.add_argument('-p_data', '--pretrain_data', type=str, \
default=CONFIG['pretrain_data'], help='the data used for pretraining')
parser.add_argument('--local_rank', default=-1, type=int,\
help='node rank for distributed training')
parser.add_argument('--num_relation_head', '-num_relation_head', default=CONFIG['num_relation_head'], type=int,\
help='number of relation heads in distillation')
parser.add_argument('--master_port', default="29501", type=str,\
help='master_port')
parser.add_argument('--model_name', type=str, required=True,\
default=CONFIG['model_name'], help='the name of target llm model')
parser.add_argument('--model_path', type=str, required=True,\
default=CONFIG['model_path'], help='the folder contains model weights')
parser.add_argument('--student_model_path', type=str, required=False,\
default=CONFIG['student_model_path'], help='the folder contains student model weights')
parser.add_argument('--teacher_model_path', type=str, required=False,\
default='', help='the folder contains teacher model weights')
parser.add_argument('--lora_weights', type=str, \
default="", help='the folder contains lora weights')
parser.add_argument('--resume_from_checkpoint', type=str, \
default="", help='the folder contains checkpoint')
parser.add_argument('--template_name', type=str, \
default='none', help='instruct template, see templates/*')
parser.add_argument('--loss_type', type=str, \
default=CONFIG['loss_type'], help='loss type for distillation')
parser.add_argument('--deepspeed', type=str, \
default=None, help='use deepspeed or not')
parser.add_argument('--train_files_pattern', '-train_files_pattern', type=str, default='//*.jsonl')
parser.add_argument('--val_files_pattern', '-val_files_pattern', type=str, default='//*.jsonl')
parser.add_argument('-do_eval', '--do_eval', action='store_true',default= False)
parser.add_argument('-output', '--output_predict', action='store_true',default= False)
parser.add_argument('-output_file', '--output_file',default="output.log")
parser.add_argument('-gradient_checkpointing', '--gradient_checkpointing', action='store_true',default= False)
parser.add_argument('-it', '--instruct_tuning', action='store_true',default=False)
parser.add_argument('-te', '--test', action='store_true', default=False)
parser.add_argument('-fp16', '--fp16', action='store_true',default=False)
parser.add_argument('-bf16', '--bf16', action='store_true',default=False)
parser.add_argument('-offload', '--offload', action='store_true',default=False)
parser.add_argument('-train_on_input', '--train_on_input', action='store_true',default=False)
parser.add_argument('-distil', '--distil', action='store_true',default=False)
parser.add_argument('-tokenizer_name', '--tokenizer_name', type=str,default='')
parser.add_argument('-streaming', '--streaming', action='store_true',default=False)
parser.add_argument('-top_kl_k', '--top_kl_k', default=1024, type=int, help='k for computing top-k vanilla KL loss')
parser.add_argument('-bild_topk', '--bild_topk', default=8, type=int, help='top-k value to calculate BiLD loss')
# set_random_seed(42)
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
args.output_file = os.path.join(args.output_dir, "log.txt")
if args.tokenizer_name == '':
args.tokenizer_name = args.model_name
args_dict = vars(args)
for k, v in args_dict.items():
CONFIG[k] = v
LORA_CONFIG['r'] = args.lora_r
device_map = "auto"
local_rank = int(os.environ.get('LOCAL_RANK'))
world_size = int(os.environ.get("WORLD_SIZE", 1))
# for mpirun
if os.environ.get('OMPI_COMM_WORLD_LOCAL_RANK'):
os.environ['OMPI_COMM_WORLD_LOCAL_RANK'] = os.environ.get('LOCAL_RANK')
if os.environ.get('OMPI_COMM_WORLD_SIZE'):
os.environ["OMPI_COMM_WORLD_SIZE"] = os.environ.get("WORLD_SIZE")
CONFIG['world_size'] = world_size
os.environ["TOKENIZERS_PARALLELISM"] = "false"
CONFIG['lora_model_loaded'] = False
CONFIG['accumulation_steps'] = args.batch_size // args.micro_batch_size
CONFIG['accumulation_steps'] = CONFIG['accumulation_steps'] // world_size
args.accumulation_steps = CONFIG['accumulation_steps']
if args.local_rank in [0, -1]:
print(CONFIG)
log2file(args, CONFIG)
datasets.config.IN_MEMORY_MAX_SIZE = 128 * 1024 * 1024
main(args)