-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathdemo.py
143 lines (113 loc) · 4.79 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#! /usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import division, print_function, absolute_import
import os
from timeit import time
import warnings
import sys
import cv2
import numpy as np
from PIL import Image
from yolo import YOLO
from deep_sort import preprocessing
from deep_sort import nn_matching
from deep_sort.detection import Detection
from deep_sort.tracker import Tracker
from tools import generate_detections as gdet
from deep_sort.detection import Detection as ddet
from constant import *
warnings.filterwarnings('ignore')
def main(yolo):
# Definition of the parameters
max_cosine_distance = 0.3
nn_budget = None
nms_max_overlap = 1.0
# deep_sort
model_filename = 'model_data/mars-small128.pb'
encoder = gdet.create_box_encoder(model_filename, batch_size=1)
metric = nn_matching.NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget)
tracker = Tracker(metric)
writeVideo_flag = True
video_capture = cv2.VideoCapture(VIDEO_PATH)
# 如果视频没有成功打开
if not video_capture.isOpened():
print("open false!")
if writeVideo_flag:
# Define the codec and create VideoWriter object
w = int(video_capture.get(3))
h = int(video_capture.get(4))
print(w, h)
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
out = cv2.VideoWriter('./temp_file/output.avi', fourcc, 30, (w, h))
list_file = open('./temp_file/detection.txt', 'w')
tracking_file = open('./temp_file/tracking.txt', 'w')
frame_index = -1
fps = 0.0
while True:
ret, frame = video_capture.read() # frame shape 640*480*3
if ret != True:
break
t1 = time.time()
# image = Image.fromarray(frame)
image = Image.fromarray(frame[...,::-1]) #bgr to rgb
# boxs 为 yolo 检测出的目标
boxs = yolo.detect_image(image)
# print("box_num",len(boxs))
features = encoder(frame, boxs)
# score to 1.0 here).
detections = [Detection(bbox, 1.0, feature) for bbox, feature in zip(boxs, features)]
# Run non-maxima suppression.
boxes = np.array([d.tlwh for d in detections])
scores = np.array([d.confidence for d in detections])
print(scores)
indices = preprocessing.non_max_suppression(boxes, nms_max_overlap, scores)
detections = [detections[i] for i in indices]
# Call the tracker
tracker.predict()
tracker.update(detections)
# 保存 trackerID
tracker_IDs = []
for track in tracker.tracks:
if not track.is_confirmed() or track.time_since_update > 1:
continue
bbox = track.to_tlbr()
# 白框为跟踪的对象, 数字为 trackerID
cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])),(255,255,255), 2)
cv2.putText(frame, str(track.track_id),(int(bbox[0]), int(bbox[1])),0, 5e-3 * 200, (0,255,0),2)
tracker_IDs.append(track.track_id)
for det, id in zip(detections, tracker_IDs):
bbox = det.to_tlbr()
# 蓝框为检测到的对象
cv2.rectangle(frame,(int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])),(255,0,0), 2)
cv2.putText(frame, str(id), (int(bbox[0]), int(bbox[1])), 0, 5e-3 * 200, (0, 0, 255), 2)
# cv2.imshow('', frame)
if writeVideo_flag:
# save a frame
out.write(frame)
# 写入目标位置和帧号
frame_index = frame_index + 1
list_file.write(str(frame_index) + ' @' + str(len(boxs)) + ' ')
if len(boxs) != 0:
for i in range(0,len(boxs)):
list_file.write('$' + str(boxs[i][0]) + ' '+str(boxs[i][1]) + ' '+str(boxs[i][2]) + ' '+str(boxs[i][3]) + ' ')
list_file.write('\n')
# 写入tracking
tracking_file.write(str(frame_index) + ' @' + str(len(tracker.tracks)) + ' ')
for track in tracker.tracks:
if (not track.is_confirmed() or track.time_since_update > 1) and frame_index >= 2 :
continue
bbox = track.to_tlbr()
tracking_file.write('$ ' + str(track.track_id) + ' ' + str(int(bbox[0])) + ' ' + str(int(bbox[1])) + ' ' + str(int(bbox[2])) + ' ' + str(int(bbox[3])) + ' ')
tracking_file.write('\n')
fps = ( fps + (1./(time.time()-t1)) ) / 2
print("fps= %f"%(fps))
# Press Q to stop!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
if writeVideo_flag:
out.release()
list_file.close()
cv2.destroyAllWindows()
if __name__ == '__main__':
main(YOLO())