-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
78 lines (54 loc) · 1.72 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import cv2
import pandas as pd
import numpy as np
from ultralytics import YOLO
model=YOLO('yolov8s.pt')
area1=[(312,388),(289,390),(474,469),(497,462)]
area2=[(279,392),(250,397),(423,477),(454,469)]
def RGB(event, x, y, flags, param):
if event == cv2.EVENT_MOUSEMOVE :
colorsBGR = [x, y]
print(colorsBGR)
cv2.namedWindow('RGB')
cv2.setMouseCallback('RGB', RGB)
cap=cv2.VideoCapture('peoplecount1.mp4')
my_file = open("coco.txt", "r")
data = my_file.read()
class_list = data.split("\n")
#print(class_list)
count=0
while True:
ret,frame = cap.read()
if not ret:
break
count += 1
if count % 2 != 0:
continue
frame=cv2.resize(frame,(1020,500))
# frame=cv2.flip(frame,1)
results=model.predict(frame)
# print(results)
a=results[0].boxes.data
px=pd.DataFrame(a).astype("float")
# print(px)
list=[]
for index,row in px.iterrows():
# print(row)
x1=int(row[0])
y1=int(row[1])
x2=int(row[2])
y2=int(row[3])
d=int(row[5])
c=class_list[d]
if 'person' in c:
cv2.rectangle(frame,(x1,y1),(x2,y2),(0,255,0),2)
cv2.putText(frame,str(c),(x1,y1),cv2.FONT_HERSHEY_COMPLEX,(0.5),(255,255,255),1)
cv2.polylines(frame,[np.array(area1,np.int32)],True,(255,0,0),2)
cv2.putText(frame,str('1'),(504,471),cv2.FONT_HERSHEY_COMPLEX,(0.5),(0,0,0),1)
cv2.polylines(frame,[np.array(area2,np.int32)],True,(255,0,0),2)
cv2.putText(frame,str('2'),(466,485),cv2.FONT_HERSHEY_COMPLEX,(0.5),(0,0,0),1)
cv2.imshow("RGB", frame)
if cv2.waitKey(1)&0xFF==27:
break
cap.release()
cv2.destroyAllWindows()