-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgraphics_chess.py
250 lines (204 loc) · 7.45 KB
/
graphics_chess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#THIS IS THE PART OF THE NEURAL NETWORK. IT TAKES THE VALUES TO CALCULATE THE MEMBRANE POTENTIALS OF THE INPUT NEURONS AND THEN CALCULATES THE NETWORK OUTPUT
#the unit in space is 1arcmin!
import pylab as pyl
import numpy as np
import cv2
import sys
import os
import matplotlib.pyplot as plt
#import nest
import datetime
#import nest.raster_plot
#import nest.topology as tp
from microsaccades_functions import *
'''
pgf_with_rc_fonts = {"font.family": "serif","font.serif": [],"font.sans-serif": []}
plt.rcParams.update(pgf_with_rc_fonts)
nest.ResetKernel() # since we run the script multiple times
#to get different poisson outputs
msd = int(np.random.normal(5000,1000,1)[0]) #master seed
nest.SetKernelStatus({'local_num_threads' : 4})
n_vp = nest.GetKernelStatus('total_num_virtual_procs')
msdrange1 = range(msd, msd+n_vp)
pyrngs = [np.random.RandomState(s) for s in msdrange1]
msdrange2 = range(msd+n_vp+1, msd+1+2*n_vp)
nest.SetKernelStatus({'grng_seed': msd+n_vp,
'rng_seeds': msdrange2})
I_E=355.
def set_I_e_random(layer):
r = nest.GetNodes(layer)[0]
node_info=nest.GetStatus(r)
localnodes=[(ni['global_id'],ni['vp']) for ni in node_info if ni['local']]
for gid, vp in localnodes:
nest.SetStatus([gid], {'I_e' : I_E+pyrngs[vp].uniform(-2.,2.)})
'''
#necessary paramater definitions
#frames = 100 #replaced by motion detectors only
#----------------------------------------------------------------------------INPUT-RATES-FROM-MS_INPUT
extent = 121.
delay = 7. #15. #30. # speed of point in poletti 2010 -> maybe increase a bit for more reacton later on
t_start = 0
t_end = 100 #315 #1000
weight = 40. #40.
weight_std = 1.5
#I_E = 410.
if len(sys.argv)==9:
sim_title = sys.argv[1]
sim_title_2 = sys.argv[2]
sim_nr = sys.argv[3]
handle_name = sys.argv[4]
#extent = float(sys.argv[3])
extent_x = float(sys.argv[5])
extent_y = float(sys.argv[6])
exp_nr = sys.argv[7]
cond_nr = sys.argv[8]
else:
sim_title = sys.argv[1]
sim_nr = sys.argv[2]
handle_name = sys.argv[3]
#extent = float(sys.argv[3])
extent_x = float(sys.argv[4])
extent_y = float(sys.argv[5])
exp_nr = sys.argv[6]
cond_nr = sys.argv[7]
sim_title_2 = ''
#delay = float(sys.argv[5])
vel = 0. #float(sys.argv[6])
#weight = float(sys.argv[7])
#extent_x = extent
#extent_y = extent
#center = extent/2.
center_x = extent_x/2.
center_y = extent_y/2.
print weight,delay
#weight = 0.
#here needs to be a part that transfers potentials into poisson rates
#m_file = open('data/midget_values.data','r+')
#m_file = open('data/'+str(sim_title)+'/'+str(sim_nr)+'/midget_rates_'+str(handle_name)+'_on.data','r+')
#m_data = np.load(m_file)
#m_file.close()
#p_file = open('data/parasolic_values.data','r+')
mmr = 300000.
pmr = 480000.
qr=[2,4,8,16,32,64,96]
parasolic_rates=[]
pmins=[]
pmaxs=[]
for q in qr:
print q
p_file = open('/home/schrader/Documents/microsaccades/data/jitter/chess_size'+str(q)+'_vel6on105off0/1/parasolic_rates_chess_size'+str(q)+'_vel6on105off0_on.data','r+')
p_data =np.load(p_file)
p_file.close()
p_noise=[[np.random.normal(0,100,t_end) for j in range(len(p_data[0]))] for i in range(len(p_data))]
if q==32 or q==64 or q==96:
p_noise=[[np.random.normal(0,100,200) for j in range(len(p_data[0]))] for i in range(len(p_data))]
if q==16:
p_noise=[[np.random.normal(0,100,200) for j in range(len(p_data[0]))] for i in range(len(p_data))]
pr=pmr*poissonRateParasols(p_data) +p_noise
parasolic_rates+=[pr]
#get minimum for colors
pmins+=[pr.min()]
pmaxs+=[pr.max()]
pmin=min(pmins)
pmax=max(pmaxs)
#midget_rates=poissonRateMidgets(m_data)
#print midget_rates
#to check for maximum spike rates in order to adopt conversion of film input
#maxs = []
#for i in range(len(midget_rates)):
# for j in range(len(midget_rates[0])):
# maxs.append(max(midget_rates[i][j][t_start:t_end]))
mmr = 300000.
#print maxs
#print 'midget max: ' + str(max(maxs)) + ' ' + str(mmr)
#paxs = []
#for i in range(len(parasolic_rates)):
# for j in range(len(parasolic_rates[0])):
# paxs.append(max(parasolic_rates[i][j][t_start:t_end]))
pmr = 480000.
#print 'parsolic max: ' + str(max(paxs)) + ' ' + str(pmr)
#ps_file = open('data/mo_det_cal/input_max_spikes.txt','a+')
#ps_file.write(str(handle_name)+' m: '+ str(max(maxs))+' p: '+ str(max(paxs))+'\n')
#ps_file.close()
#for rates
mrs = []
prs=[]
#print midget_rates
#print parasolic_rates
#-----------------------------------------------------------------------------------------NETWORK-PART
#---------------------------------------------------------------------------INITIALIZE-POISSON-NEURONS
#storage = open('data/'+sim_title+'/network/'+handle_name+'.data','w+')
#storage.close()
#nest.SetKernelStatus({'resolution': 0.001,
# 'overwrite_files': True,
# 'data_path': 'data/'+sim_title+'/network/',
# 'data_prefix': ''})
#set the initial Poisson rate
rate = 100.
#----------------------------------------------------------------------------------------CREATE-LAYERS
#rows = len(midget_rates)
#cols = len(midget_rates[0])
#print rows, cols
#rows = 40
#cols = 40
#get grid data form previous simulation
#gp_file = open('data/'+str(sim_title)+str(sim_title_2)+'/'+str(sim_nr)+'/p_pos_'+handle_name+'.data','r+')
#gp_file = open('data/test_vid/p_pos_test_vid.data','r+')
#gp_data = np.load(gp_file)
#gp_file.close()
#gp_data = gp_data.tolist()
'''
#print gm_pos
print 'minimum midgets'
print gm_min, gm_max[0]+gm_min[0]+10.
print 'maximum midgets'
print gm_max, gm_max[1]+gm_min[1]+10.
'''
#gp_pos=[]
#gp_r_0_pos=[]
#gp_r_60_pos=[]
#gm_r_120_pos=[]
#mean, stdv, timelength
#p_noise=[[np.random.normal(0,10,t_end) for j in range(len(gp_data[0]))] for i in range(len(gp_data))]
#parasolic_rates=pmr*parasolic_rates #+p_noise
#for f in range(t_start,t_end):#frames):
#print f
#reset rates
#fig = plt.figure()
#fig.set_size_inches(1,1)
#ax = plt.Axes(fig, [0., 0., 1., 1.])
#ax.set_axis_off()
#fig.add_axes(ax)
fig, (axes) = plt.subplots(nrows=3, ncols=2, )
for i in range(6):
pr= parasolic_rates[i]
im = axes[int(i/2)][i%2].imshow(pr[:,:,99],cmap=plt.cm.hot,vmin=0.,vmax=pmax,extent=[0,30,0,30])
axes[int(i/2)][i%2].tick_params(labelsize=8)
axes[int(i/2)][i%2].set_yticks(np.arange(0,31,10))
if i%2==1:
axes[int(i/2)][i%2].set_yticklabels([])
if i/2<2:
axes[int(i/2)][i%2].set_xticklabels([])
cbar = fig.colorbar(im, ax=axes.ravel().tolist(), shrink=0.5)
#plt.tight_layout()
plt.savefig('/home/schrader/Documents/microsaccades/img/jitter/chess_size_noise.pdf', dpi = 128)
plt.show()
'''
my_image1 = np.linspace(0, 10, 10000).reshape(100,100)
my_image2 = np.sqrt(my_image1.T) + 3
my_image3 = np.sqrt(my_image1.T) + 3
my_image4 = np.sqrt(my_image1.T) + 3
fig, axes = plt.subplots(nrows=2, ncols=2)
im = axes[0][0].imshow(my_image1)
clim=im.properties()['clim']
axes[0][1].imshow(my_image2, clim=clim)
axes[1][0].imshow(my_image2, clim=clim)
axes[1][1].imshow(my_image2, clim=clim)
fig.colorbar(im, ax=axes.ravel().tolist(), shrink=0.5)
plt.tight_layout()
plt.show()
#ax.imshow(parasolic_rates[:,:,99], cmap=plt.cm.bwr, interpolation='nearest', animated=True) #gray
#plt.savefig('/home/schrader/Documents/microsaccades/img/animation/jitter/chess_input/'+str(f+1).zfill(3)+'.png', dpi = 128)
#plt.savefig('/home/schrader/Documents/microsaccades/img/jitter/chess_size'+str(cond_nr)+'.png', dpi = 128)
plt.close()
'''