-
Notifications
You must be signed in to change notification settings - Fork 100
/
Copy pathvoc_annotation.py
82 lines (73 loc) · 3.26 KB
/
voc_annotation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import xml.etree.ElementTree as ET
import tensorflow as tf
from os import path
import numpy as np
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
tfrecords_size = 1000
def convert_to_tfrecord(xml, record_writer):
name, _ = xml.split('/')[-1].split('.')
root = ET.parse(xml.encode('utf-8')).getroot()
xmins = []
ymins = []
xmaxs = []
ymaxs = []
labels = []
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
xmins.append(float(xmlbox.find('xmin').text))
ymins.append(float(xmlbox.find('ymin').text))
xmaxs.append(float(xmlbox.find('xmax').text))
ymaxs.append(float(xmlbox.find('ymax').text))
labels.append(int(cls_id))
image_data = tf.io.read_file(
tf.io.gfile.glob('%s/%s/**/%s.jp*g' % (clazz, file, name))[0])
example = tf.train.Example(features=tf.train.Features(
feature={
'image/encoded':
tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_data])),
'image/object/bbox/name':
tf.train.Feature(bytes_list=tf.train.BytesList(value=[name])),
'image/object/bbox/xmin':
tf.train.Feature(float_list=tf.train.FloatList(value=xmins)),
'image/object/bbox/xmax':
tf.train.Feature(float_list=tf.train.FloatList(value=xmaxs)),
'image/object/bbox/ymin':
tf.train.Feature(float_list=tf.train.FloatList(value=ymins)),
'image/object/bbox/ymax':
tf.train.Feature(float_list=tf.train.FloatList(value=ymaxs)),
'image/object/bbox/label':
tf.train.Feature(float_list=tf.train.FloatList(value=labels))
}))
record_writer.write(example.SerializeToString())
for clazz in classes:
index_records = 1
num = 1
record_writer = tf.io.TFRecordWriter(
path.join('./', 'cci_%d_%s.tfrecords' % (index_records, clazz)))
for file in tf.io.gfile.listdir(clazz):
if tf.io.gfile.isdir('%s/%s' % (clazz, file)):
xmls = tf.io.gfile.glob('%s/%s/**/*.xml' % (clazz, file))
np.random.shuffle(xmls)
for xml in xmls:
if num >= tfrecords_size:
tf.io.gfile.rename(
'cci_%d_%s.tfrecords' % (index_records, clazz),
'cci_%d_%s_%d.tfrecords' % (index_records, clazz, num))
index_records += 1
num = 1
record_writer.close()
record_writer = tf.io.TFRecordWriter(
path.join(
'./',
'cci_%d_%s.tfrecords' % (index_records, clazz)))
convert_to_tfrecord(xml, record_writer)
num += 1
tf.io.gfile.rename(
'cci_%d_%s.tfrecords' % (index_records, clazz),
'cci_%d_%s_%d.tfrecords' % (index_records, clazz, num))
record_writer.close()