-
Notifications
You must be signed in to change notification settings - Fork 100
/
Copy pathyolo.py
executable file
·436 lines (390 loc) · 16.9 KB
/
yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
# -*- coding: utf-8 -*-
"""Class definition of YOLO_v3 style detection model on image and video."""
import colorsys
from timeit import default_timer as timer
import numpy as np
from PIL import Image, ImageFont, ImageDraw
import cv2
import tensorflow as tf
from yolo3.model import darknet_yolo_body, mobilenetv2_yolo_body, efficientnet_yolo_body, YoloEval
from yolo3.utils import letterbox_image, get_anchors, get_classes
from yolo3.enums import BACKBONE
from yolo3.map import MAPCallback
import os
from typing import List, Tuple
from tensorflow_serving.apis import prediction_log_pb2, predict_pb2
from functools import partial
from tensorflow.python.compiler.tensorrt import trt_convert as trt
tf.keras.backend.set_learning_phase(0)
class YoloModel(tf.keras.Model):
def __init__(self,
model_body,
num_anchors,
classes,
model_path,
anchors,
input_shape,
score=0.2,
nms=0.5,
with_classes=False,
name=None,
**kwargs):
super(YoloModel, self).__init__(name=name, **kwargs)
self.model_body = model_body
self.num_anchors = num_anchors
self.classes = classes
self.with_classes = with_classes
self.num_classes = len(classes)
self.model_path = model_path
self.anchors = anchors
self.score = score
self.nms = nms
self.input_shapes = input_shape
self.model = self.model_body(
tf.keras.layers.Input(
shape=[*input_shape, 3], batch_size=1, dtype=tf.float32),
num_anchors=self.num_anchors // 3,
num_classes=self.num_classes)
self.model.load_weights(self.model_path)
self.yolo_eval=YoloEval(
self.anchors,
self.num_classes,
score_threshold=self.score,
iou_threshold=self.nms,
name='yolo')
def parse_image(self, image):
decoded_image = tf.io.decode_image(image, channels=3, dtype=tf.float32)
decoded_image.set_shape([None, None, 3])
letterboxed_image = letterbox_image(decoded_image,
self.input_shapes)
return decoded_image, letterboxed_image
@tf.function(input_signature=[
tf.TensorSpec(shape=(1), dtype=tf.string, name='predict_image')
])
def call(self, input):
decoded_image, input_image = self.parse_image(input[0])
decoded_image_shape = tf.shape(decoded_image)[0:2]
input_image = tf.reshape(input_image, [-1, *self.input_shapes, 3])
input_image = tf.cast(input_image, tf.float32)
out_boxes, out_scores, out_classes = self.yolo_eval(self.model(input_image),decoded_image_shape)
if self.with_classes:
out_classes = tf.gather(self.classes, out_classes)
return out_boxes, out_scores, out_classes
class YOLO(object):
def __init__(self, FLAGS):
self.backbone = FLAGS.get('backbone', BACKBONE.MOBILENETV2)
self.class_names = get_classes(
FLAGS.get('classes_path', 'model_data/voc_classes.txt'))
self.anchors = get_anchors(
FLAGS.get('anchors_path', 'model_data/yolo_anchors'))
self.input_shape = FLAGS.get('input_size', (416, 416))
self.score = FLAGS.get('score', 0.2)
self.nms = FLAGS.get('nms', 0.5)
self.with_classes = FLAGS.get('with_classes', False)
self.generate(FLAGS)
def generate(self, FLAGS):
model_path = os.path.expanduser(FLAGS['model'])
if model_path.endswith('.h5') is not True:
model_path = tf.train.latest_checkpoint(model_path)
# Load model, or construct model and load weights.
num_anchors = len(self.anchors)
num_classes = len(self.class_names)
try:
self.yolo_model = tf.keras.models.load_model(
model_path, compile=False)
except:
if self.backbone == BACKBONE.MOBILENETV2:
model_body = partial(
mobilenetv2_yolo_body, alpha=FLAGS.get('alpha', 1.4))
elif self.backbone == BACKBONE.DARKNET53:
model_body = darknet_yolo_body
elif self.backbone == BACKBONE.EFFICIENTNET:
model_body = partial(
efficientnet_yolo_body,
num_anchors=num_anchors // 3,
num_classes=num_classes,
drop_rate=0.2,
data_format="channels_last")
self.yolo_model = YoloModel(
model_body, num_anchors, self.class_names, model_path,
self.anchors, self.input_shape, self.score, self.nms,
self.with_classes)
else:
assert self.yolo_model.layers[-1].output_shape[-1] == \
num_anchors / len(self.yolo_model.output) * (num_classes + 5), \
'Mismatch between model and given anchor and class sizes'
print('{} model, anchors, and classes loaded.'.format(model_path))
# Generate output tensor targets for filtered bounding boxes.
hsv_tuples: List[Tuple[float, float, float]] = [
(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))
]
self.colors: List[Tuple[float, float, float]] = list(
map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors: List[Tuple[int, int, int]] = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
np.random.seed(10101) # Fixed seed for consistent colors across runs.
np.random.shuffle(
self.colors) # Shuffle colors to decorrelate adjacent classes.
np.random.seed(None) # Reset seed to default.
def detect_image(self, image, draw=True):
image_data = image
if isinstance(image, bytes) is False:
image_data = image.read()
start = timer()
out_boxes, out_scores, out_classes = self.yolo_model([image_data])
if tf.executing_eagerly():
out_boxes = out_boxes.numpy()
out_scores = out_scores.numpy()
out_classes = out_classes.numpy()
else:
start = timer()
out_boxes, out_scores, out_classes = tf.compat.v1.keras.backend.get_session(
).run([out_boxes, out_scores, out_classes])
end = timer()
print('Found {} boxes for {}'.format(len(out_boxes), 'img'))
if draw:
image = Image.open(image)
font = ImageFont.truetype(
font='font/FiraMono-Medium.otf',
size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
thickness = (image.size[1] + image.size[0]) // 300
draw = ImageDraw.Draw(image)
for i, c in reversed(list(enumerate(out_classes))):
if self.with_classes:
c = self.class_names.index(str(c, encoding="utf-8"))
predicted_class = self.class_names[c]
box = out_boxes[i]
score = out_scores[i]
label = '{} {:.2f}'.format(predicted_class, score)
label_size = draw.textsize(label, font)
top, left, bottom, right = box
print(label, (left, top), (right, bottom))
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
# My kingdom for a good redistributable image drawing library.
for i in range(thickness):
draw.rectangle([left + i, top + i, right - i, bottom - i],
outline=self.colors[c])
draw.rectangle(
[tuple(text_origin),
tuple(text_origin + label_size)],
fill=self.colors[c])
draw.text(text_origin, label, fill=(0, 0, 0), font=font)
del draw
print(end - start)
return image
else:
return out_boxes, out_scores, out_classes
def overwrite_path(path):
if tf.io.gfile.exists(path):
while True:
overwrite = input("Overwrite existed model(yes/no):")
if overwrite == 'yes':
tf.io.gfile.rmtree(path)
break
elif overwrite == 'no':
raise ValueError(
"Export directory already exists, and isn't empty. Please choose a different export directory, or delete all the contents of the specified directory: "
+ path)
else:
print('Please input yes/no')
def export_tfjs_model(yolo, path):
import tensorflowjs as tfjs
import tempfile
overwrite_path(path)
temp_savedmodel_dir = tempfile.mktemp(suffix='.savedmodel')
tf.keras.experimental.export_saved_model(
yolo.yolo_model, temp_savedmodel_dir, serving_only=True)
tfjs.converters.tf_saved_model_conversion_v2.convert_tf_saved_model(
temp_savedmodel_dir,
path,
signature_def='serving_default',
saved_model_tags='serve')
# tfjs.converters.save_keras_model(yolo.yolo_model,
# path)
def export_serving_model(yolo, path, warmup_path=None,with_tensorrt=False):
overwrite_path(path)
tf.saved_model.save(yolo.yolo_model, path)
if with_tensorrt:
params=trt.TrtConversionParams(
rewriter_config_template=None,
max_workspace_size_bytes=trt.DEFAULT_TRT_MAX_WORKSPACE_SIZE_BYTES,
precision_mode=trt.TrtPrecisionMode.FP16,
minimum_segment_size=3,
is_dynamic_op=True,
maximum_cached_engines=1,
use_calibration=True,
max_batch_size=1)
converter = trt.TrtGraphConverterV2(input_saved_model_dir=path,conversion_params=params)
converter.convert()
tf.io.gfile.rmtree(path)
converter.save(path)
asset_extra = os.path.join(path, "assets.extra")
tf.io.gfile.mkdir(asset_extra)
with tf.io.TFRecordWriter(
os.path.join(asset_extra, "tf_serving_warmup_requests")) as writer:
request = predict_pb2.PredictRequest()
request.model_spec.name = 'detection'
request.model_spec.signature_name = 'serving_default'
if warmup_path is None:
warmup_path = input('Please enter warm up image path:')
image = open(warmup_path, 'rb').read()
image_data = np.expand_dims(image, 0)
request.inputs['predict_image'].CopyFrom(
tf.compat.v1.make_tensor_proto(image_data))
log = prediction_log_pb2.PredictionLog(
predict_log=prediction_log_pb2.PredictLog(request=request))
writer.write(log.SerializeToString())
def export_tflite_model(yolo, path):
overwrite_path(path)
converter = tf.lite.TFLiteConverter.from_keras_model(yolo.yolo_model)
# converter.allow_custom_ops = True
# converter.experimental_enable_mlir_converter=True
converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
tflite_model = converter.convert()
tf.io.write_file(os.path.join(path,'model.tflite'),tflite_model)
def calculate_map(yolo, glob):
mAP = MAPCallback(glob, yolo.input_shape, yolo.class_names)
mAP.set_model(yolo.yolo_model)
APs = mAP.calculate_aps()
for cls in range(len(yolo.class_names)):
if cls in APs:
print(yolo.class_names[cls] + ' ap: ', APs[cls])
mAP = np.mean([APs[cls] for cls in APs])
print('mAP: ', mAP)
def inference_img(yolo, image_path, draw=True):
try:
image = open(image_path, 'rb')
except:
print('Open Error! Try again!')
else:
r_image = yolo.detect_image(image, draw)
r_image.show()
def detect_img(yolo):
while True:
inputs = input('Input image filename:')
if inputs.endswith('.txt'):
with open(input) as file:
for image_path in file.readlines():
image_path = image_path.strip()
inference_img(yolo, image_path, False)
else:
inference_img(yolo, inputs)
yolo.close_session()
def detect_video(yolo: YOLO, video_path: str, output_path: str = ""):
video_path_formatted = video_path
if video_path.isdigit():
video_path_formatted = int(video_path)
vid = cv2.VideoCapture(video_path_formatted)
if not vid.isOpened():
raise IOError("Couldn't open webcam or video")
video_FourCC = int(vid.get(cv2.CAP_PROP_FOURCC))
video_fps = vid.get(cv2.CAP_PROP_FPS)
video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)))
isOutput = True if output_path != "" else False
if isOutput:
print("!!! TYPE:", type(output_path), type(video_FourCC),
type(video_fps), type(video_size))
out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size)
accum_time = 0
curr_fps = 0
fps = "FPS: ??"
prev_time = timer()
trackers = {}
font = ImageFont.truetype(font='font/FiraMono-Medium.otf', size=30)
thickness = 1
frame_count = 0
while True:
return_value, frame = vid.read()
image = Image.fromarray(frame)
img_str = cv2.imencode('.jpg', np.array(image))[1].tostring()
draw = ImageDraw.Draw(image)
if len(trackers) > 0:
for tracker in trackers:
success, box = tracker.update(frame)
if success is not True:
trackers.pop(tracker)
continue
left, top, width, height = box
right = left + width
bottom = top + height
label = '{}'.format(trackers[tracker])
label_size = draw.textsize(label, font)
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
# My kingdom for a good redistributable image drawing library.
for i in range(thickness):
draw.rectangle([left + i, top + i, right - i, bottom - i],
outline=yolo.colors[c])
draw.rectangle(
[tuple(text_origin),
tuple(text_origin + label_size)],
fill=yolo.colors[c])
draw.text(text_origin, label, fill=(0, 0, 0), font=font)
frame_count += 1
if frame_count == 100:
for tracker in trackers:
del tracker
trackers = {}
frame_count = 0
else:
boxes, scores, classes = yolo.detect_image(img_str, False)
for i, c in enumerate(classes):
predicted_class = yolo.class_names[c]
top, left, bottom, right = boxes[i]
height = abs(bottom - top)
width = abs(right - left)
tracker = cv2.TrackerCSRT_create()
#tracker = cv2.TrackerKCF_create()
#tracker = cv2.TrackerMOSSE_create()
tracker.init(frame, (left, top, width, height))
trackers[tracker] = predicted_class
label = '{}'.format(predicted_class)
label_size = draw.textsize(label, font)
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
# My kingdom for a good redistributable image drawing library.
for i in range(thickness):
draw.rectangle([left + i, top + i, right - i, bottom - i],
outline=yolo.colors[c])
draw.rectangle(
[tuple(text_origin),
tuple(text_origin + label_size)],
fill=yolo.colors[c])
draw.text(text_origin, label, fill=(0, 0, 0), font=font)
del draw
result = np.asarray(image)
curr_time = timer()
exec_time = curr_time - prev_time
prev_time = curr_time
accum_time = accum_time + exec_time
curr_fps = curr_fps + 1
if accum_time > 1:
accum_time = accum_time - 1
fps = "FPS: " + str(curr_fps)
curr_fps = 0
cv2.putText(
result,
text=fps,
org=(3, 15),
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.50,
color=(255, 0, 0),
thickness=2)
cv2.namedWindow("result", cv2.WINDOW_NORMAL)
cv2.imshow("result", result)
if isOutput:
out.write(result)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
yolo.close_session()