-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBayesian_analysis.py
37 lines (23 loc) · 1.07 KB
/
Bayesian_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#
from math import log
def Bayesian_score(rpt_fileName,alpha_fileName,matrix_fileName):
N=20 # number of amino acids
rpt_file=open(rpt_fileName,'r');
alpha_file=open(alpha_fileName,'r');
matrix_fileName=open(matrix_fileName,'r')
RPT_seq=rpt_file.read().strip();
alpha_seq=alpha_file.read().strip();
scoring_matrix=[] #read from a file
aa_list=['a','b','c','d'] # to get the indices
alpha_len=len(alpha_seq)
score=0 # the final score for this RPT and alpha binding probability
for rpt in range(1,8):
for alpha in range(1,alpha_len):
row= aa_list.index(RPT_seq[rpt])
column=aa_list.index(alpha_seq[alpha])
joint_counts=scoring_matrix[row,column];
likelihood=joint_counts/N
prior=1/N #===== might be changed
posterior=likelihood*prior
score+=log(posterior,10)
print("RPT: "+rpt_fileName+" alpha: "+alpha_fileName+" score: "+str(score))