-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
529 lines (418 loc) · 23.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import torch
import open3d as o3d
from random import randint
from utils.loss_utils import calculate_loss, l1_loss
from gaussian_renderer import render_surfel, render_initial, render_volume, network_gui
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import numpy as np
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
from datetime import datetime
from torchvision.utils import save_image, make_grid
import torch.nn.functional as F
from utils.image_utils import visualize_depth
from utils.graphics_utils import linear_to_srgb
from utils.mesh_utils import GaussianExtractor, post_process_mesh
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, model_path, debug_from=None):
first_iter = 0
tb_writer = prepare_output_and_logger()
# Set up parameters
TOT_ITER = opt.iterations + 1
TEST_INTERVAL = 1000
MESH_EXTRACT_INTERVAL = 2000
# For real scenes
USE_ENV_SCOPE = opt.use_env_scope # False
if USE_ENV_SCOPE:
center = [float(c) for c in opt.env_scope_center]
ENV_CENTER = torch.tensor(center, device='cuda')
ENV_RADIUS = opt.env_scope_radius
REFL_MSK_LOSS_W = 0.4
gaussians = GaussianModel(dataset.sh_degree)
set_gaussian_para(gaussians, opt, vol=(opt.volume_render_until_iter > opt.init_until_iter)) # #
scene = Scene(dataset, gaussians) # init all parameters(pos, scale, rot...) from pcds
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
gaussExtractor = GaussianExtractor(gaussians, render_initial, pipe, bg_color=bg_color)
iter_start = torch.cuda.Event(enable_timing=True)
iter_end = torch.cuda.Event(enable_timing=True)
viewpoint_stack = None
ema_loss_for_log = 0.0
ema_dist_for_log = 0.0
ema_normal_for_log = 0.0
ema_normal_smooth_for_log = 0.0
ema_depth_smooth_for_log = 0.0
ema_psnr_for_log = 0.0
psnr_test = 0
progress_bar = tqdm(range(first_iter, TOT_ITER), desc="Training progress")
first_iter += 1
iteration = first_iter
print(f'Propagation until: {opt.normal_prop_until_iter }')
print(f'Densify until: {opt.densify_until_iter}')
print(f'Total iterations: {TOT_ITER}')
initial_stage = opt.initial
if not initial_stage:
opt.init_until_iter = 0
# Training loop
while iteration < TOT_ITER:
iter_start.record()
gaussians.update_learning_rate(iteration)
# Increase SH levels every 1000 iterations
if iteration > opt.feature_rest_from_iter and iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Control the init stage
if iteration > opt.init_until_iter:
initial_stage = False
# Control the indirect stage
if iteration == opt.indirect_from_iter + 1:
opt.indirect = 1
if iteration == (opt.volume_render_until_iter + 1) and opt.volume_render_until_iter > opt.init_until_iter:
reset_gaussian_para(gaussians, opt)
# Initialize envmap
if not initial_stage:
if iteration <= opt.volume_render_until_iter:
envmap2 = gaussians.get_envmap_2
envmap2.build_mips()
else:
envmap = gaussians.get_envmap
envmap.build_mips()
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack) - 1))
# Set render
render = select_render_method(iteration, opt, initial_stage)
render_pkg = render(viewpoint_cam, gaussians, pipe, background, srgb=opt.srgb, opt=opt)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
gt_image = viewpoint_cam.original_image.cuda()
total_loss, tb_dict = calculate_loss(viewpoint_cam, gaussians, render_pkg, opt, iteration)
dist_loss, normal_loss, loss, Ll1, normal_smooth_loss, depth_smooth_loss = tb_dict["loss_dist"], tb_dict["loss_normal_render_depth"], tb_dict["loss0"], tb_dict["loss_l1"], tb_dict["loss_normal_smooth"], tb_dict["loss_depth_smooth"]
def get_outside_msk():
return None if not USE_ENV_SCOPE else torch.sum((gaussians.get_xyz - ENV_CENTER[None])**2, dim=-1) > ENV_RADIUS**2
if USE_ENV_SCOPE and 'refl_strength_map' in render_pkg:
refls = gaussians.get_refl
refl_msk_loss = refls[get_outside_msk()].mean()
total_loss += REFL_MSK_LOSS_W * refl_msk_loss
total_loss.backward()
iter_end.record()
with torch.no_grad():
if iteration % TEST_INTERVAL == 0 or iteration == first_iter + 1 or iteration == opt.volume_render_until_iter + 1:
save_training_vis(viewpoint_cam, gaussians, background, render, pipe, opt, iteration, initial_stage)
ema_loss_for_log = 0.4 * loss + 0.6 * ema_loss_for_log
ema_dist_for_log = 0.4 * dist_loss + 0.6 * ema_dist_for_log
ema_normal_for_log = 0.4 * normal_loss + 0.6 * ema_normal_for_log
ema_normal_smooth_for_log = 0.4 * normal_smooth_loss + 0.6 * ema_normal_smooth_for_log
ema_depth_smooth_for_log = 0.4 * depth_smooth_loss + 0.6 * ema_depth_smooth_for_log
ema_psnr_for_log = 0.4 * psnr(image, gt_image).mean().double().item() + 0.6 * ema_psnr_for_log
if iteration % TEST_INTERVAL == 0:
psnr_test = evaluate_psnr(scene, render, {"pipe": pipe, "bg_color": background, "opt": opt})
if iteration % 10 == 0:
loss_dict = {
"Loss": f"{ema_loss_for_log:.{5}f}",
"Distort": f"{ema_dist_for_log:.{5}f}",
"Normal": f"{ema_normal_for_log:.{5}f}",
"Points": f"{len(gaussians.get_xyz)}",
"PSNR-train": f"{ema_psnr_for_log:.{4}f}",
"PSNR-test": f"{psnr_test:.{4}f}"
}
progress_bar.set_postfix(loss_dict)
progress_bar.update(10)
if iteration == TOT_ITER:
progress_bar.close()
if tb_writer:
tb_writer.add_scalar('train_loss_patches/dist_loss', ema_dist_for_log, iteration)
tb_writer.add_scalar('train_loss_patches/normal_loss', ema_normal_for_log, iteration)
training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end),
testing_iterations, scene, render, {"pipe": pipe, "bg_color": background, "opt":opt})
if iteration in saving_iterations:
print(f"\n[ITER {iteration}] Saving Gaussians")
scene.save(iteration)
# Densification
if iteration < opt.densify_until_iter and iteration != opt.volume_render_until_iter:
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter],
radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration <= opt.init_until_iter:
opacity_reset_intval = 3000
densification_interval = 100
elif iteration <= opt.normal_prop_until_iter :
opacity_reset_intval = 3000
densification_interval = opt.densification_interval_when_prop
else:
opacity_reset_intval = 3000
densification_interval = 100
if iteration > opt.densify_from_iter and iteration % densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, opt.prune_opacity_threshold, scene.cameras_extent,
size_threshold)
HAS_RESET0 = False
if iteration % opacity_reset_intval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
HAS_RESET0 = True
outside_msk = get_outside_msk()
gaussians.reset_opacity0()
gaussians.reset_refl(exclusive_msk=outside_msk)
if opt.opac_lr0_interval > 0 and (
opt.init_until_iter < iteration <= opt.normal_prop_until_iter ) and iteration % opt.opac_lr0_interval == 0:
gaussians.set_opacity_lr(opt.opacity_lr)
if (opt.init_until_iter < iteration <= opt.normal_prop_until_iter ) and iteration % opt.normal_prop_interval == 0:
if not HAS_RESET0:
outside_msk = get_outside_msk()
gaussians.reset_opacity1(exclusive_msk=outside_msk)
if iteration > opt.volume_render_until_iter and opt.volume_render_until_iter > opt.init_until_iter:
gaussians.dist_color(exclusive_msk=outside_msk)
# gaussians.dist_albedo(exclusive_msk=outside_msk)
gaussians.reset_scale(exclusive_msk=outside_msk)
if opt.opac_lr0_interval > 0 and iteration != opt.normal_prop_until_iter :
gaussians.set_opacity_lr(0.0)
if (iteration >= opt.indirect_from_iter and iteration % MESH_EXTRACT_INTERVAL == 0) or iteration == (opt.indirect_from_iter):
if not HAS_RESET0:
gaussExtractor.reconstruction(scene.getTrainCameras())
if 'ref_real' in dataset.source_path:
mesh = gaussExtractor.extract_mesh_unbounded(resolution=opt.mesh_res)
else:
depth_trunc = (gaussExtractor.radius * 2.0) if opt.depth_trunc < 0 else opt.depth_trunc
voxel_size = (depth_trunc / opt.mesh_res) if opt.voxel_size < 0 else opt.voxel_size
sdf_trunc = 5.0 * voxel_size if opt.sdf_trunc < 0 else opt.sdf_trunc
mesh = gaussExtractor.extract_mesh_bounded(voxel_size=voxel_size, sdf_trunc=sdf_trunc, depth_trunc=depth_trunc)
mesh = post_process_mesh(mesh, cluster_to_keep=opt.num_cluster)
ply_path = os.path.join(model_path,f'test_{iteration:06d}.ply')
o3d.io.write_triangle_mesh(ply_path, mesh)
gaussians.update_mesh(mesh)
if iteration < TOT_ITER:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none=True)
if iteration in checkpoint_iterations:
print(f"\n[ITER {iteration}] Saving Checkpoint")
torch.save((gaussians.capture(), iteration), scene.model_path + f"/chkpnt{iteration}.pth")
iteration += 1
# ============================================================
# Utils for training
def select_render_method(iteration, opt, initial_stage):
if initial_stage:
render = render_initial
elif iteration <= opt.volume_render_until_iter:
render = render_volume
else:
render = render_surfel
return render
def set_gaussian_para(gaussians, opt, vol=False):
gaussians.enlarge_scale = opt.enlarge_scale
gaussians.rough_msk_thr = opt.rough_msk_thr
gaussians.init_roughness_value = opt.init_roughness_value
gaussians.init_refl_value = opt.init_refl_value
gaussians.refl_msk_thr = opt.refl_msk_thr
def reset_gaussian_para(gaussians, opt):
gaussians.reset_ori_color()
gaussians.reset_refl_strength(opt.init_refl_value)
gaussians.reset_roughness(opt.init_roughness_value)
gaussians.refl_msk_thr = opt.refl_msk_thr
gaussians.rough_msk_thr = opt.rough_msk_thr
def save_training_vis(viewpoint_cam, gaussians, background, render_fn, pipe, opt, iteration, initial_stage):
with torch.no_grad():
render_pkg = render_fn(viewpoint_cam, gaussians, pipe, background, srgb=opt.srgb, opt=opt)
error_map = torch.abs(viewpoint_cam.original_image.cuda() - render_pkg["render"])
if initial_stage:
visualization_list = [
viewpoint_cam.original_image.cuda(),
render_pkg["render"],
render_pkg["rend_alpha"].repeat(3, 1, 1),
visualize_depth(render_pkg["surf_depth"]),
render_pkg["rend_normal"] * 0.5 + 0.5,
render_pkg["surf_normal"] * 0.5 + 0.5,
error_map
]
elif iteration <= opt.volume_render_until_iter:
visualization_list = [
viewpoint_cam.original_image.cuda(),
render_pkg["render"],
render_pkg["base_color_map"],
render_pkg["diffuse_map"],
render_pkg["specular_map"],
render_pkg["refl_strength_map"].repeat(3, 1, 1),
render_pkg["roughness_map"].repeat(3, 1, 1),
render_pkg["rend_alpha"].repeat(3, 1, 1),
visualize_depth(render_pkg["surf_depth"]),
render_pkg["rend_normal"] * 0.5 + 0.5,
render_pkg["surf_normal"] * 0.5 + 0.5,
error_map
]
if opt.indirect:
visualization_list += [
render_pkg["visibility"].repeat(3, 1, 1),
render_pkg["direct_light"],
render_pkg["indirect_light"],
]
else:
visualization_list = [
viewpoint_cam.original_image.cuda(),
render_pkg["render"],
render_pkg["base_color_map"],
render_pkg["diffuse_map"],
render_pkg["specular_map"],
render_pkg["refl_strength_map"].repeat(3, 1, 1),
render_pkg["roughness_map"].repeat(3, 1, 1),
render_pkg["rend_alpha"].repeat(3, 1, 1),
visualize_depth(render_pkg["surf_depth"]),
render_pkg["rend_normal"] * 0.5 + 0.5,
render_pkg["surf_normal"] * 0.5 + 0.5,
error_map,
]
grid = torch.stack(visualization_list, dim=0)
grid = make_grid(grid, nrow=4)
scale = grid.shape[-2] / 800
grid = F.interpolate(grid[None], (int(grid.shape[-2] / scale), int(grid.shape[-1] / scale)))[0]
save_image(grid, os.path.join(args.visualize_path, f"{iteration:06d}.png"))
if not initial_stage:
if opt.volume_render_until_iter > opt.init_until_iter and iteration <= opt.volume_render_until_iter:
env_dict = gaussians.render_env_map_2()
else:
env_dict = gaussians.render_env_map()
grid = [
env_dict["env1"].permute(2, 0, 1),
env_dict["env2"].permute(2, 0, 1),
]
grid = make_grid(grid, nrow=1, padding=10)
save_image(grid, os.path.join(args.visualize_path, f"{iteration:06d}_env.png"))
NORM_CONDITION_OUTSIDE = False
def prepare_output_and_logger():
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
args.visualize_path = os.path.join(args.model_path, "visualize")
os.makedirs(args.visualize_path, exist_ok=True)
print("Visualization folder: {}".format(args.visualize_path))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
@torch.no_grad()
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderkwargs):
if tb_writer:
tb_writer.add_scalar('train_loss_patches/reg_loss', Ll1, iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss, iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
# Report test and samples of training set
if iteration in testing_iterations:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
for idx, viewpoint in enumerate(tqdm(config['cameras'])):
render_pkg = renderFunc(viewpoint, scene.gaussians, **renderkwargs)
image = torch.clamp(render_pkg["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
if tb_writer and (idx < 5):
from utils.general_utils import colormap
depth = render_pkg["surf_depth"]
norm = depth.max()
depth = depth / norm
depth = colormap(depth.cpu().numpy()[0], cmap='turbo')
tb_writer.add_images(config['name'] + "_view_{}/depth".format(viewpoint.image_name), depth[None], global_step=iteration)
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
try:
rend_alpha = render_pkg['rend_alpha']
rend_normal = render_pkg["rend_normal"] * 0.5 + 0.5
surf_normal = render_pkg["surf_normal"] * 0.5 + 0.5
tb_writer.add_images(config['name'] + "_view_{}/rend_normal".format(viewpoint.image_name), rend_normal[None], global_step=iteration)
tb_writer.add_images(config['name'] + "_view_{}/surf_normal".format(viewpoint.image_name), surf_normal[None], global_step=iteration)
tb_writer.add_images(config['name'] + "_view_{}/rend_alpha".format(viewpoint.image_name), rend_alpha[None], global_step=iteration)
rend_dist = render_pkg["rend_dist"]
rend_dist = colormap(rend_dist.cpu().numpy()[0])
tb_writer.add_images(config['name'] + "_view_{}/rend_dist".format(viewpoint.image_name), rend_dist[None], global_step=iteration)
except:
pass
if iteration == testing_iterations[0]:
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
torch.cuda.empty_cache()
@torch.no_grad()
def evaluate_psnr(scene, renderFunc, renderkwargs):
psnr_test = 0.0
torch.cuda.empty_cache()
if len(scene.getTestCameras()):
for viewpoint in scene.getTestCameras():
render_pkg = renderFunc(viewpoint, scene.gaussians, **renderkwargs)
image = torch.clamp(render_pkg["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
psnr_test += psnr(image, gt_image).mean().double()
psnr_test /= len(scene.getTestCameras())
torch.cuda.empty_cache()
return psnr_test
# ============================================================================
# Main function
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[7000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[10000,20000,30000,40000,50000,60000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
args.test_iterations = args.test_iterations + [i for i in range(10000, args.iterations+1, 5000)]
args.test_iterations.append(args.volume_render_until_iter)
if not args.model_path:
# 获取当前时间并格式化为精确到分钟
current_time = datetime.now().strftime('%m%d_%H%M')
# 获取args.source_path的最后一个子目录名
last_subdir = os.path.basename(os.path.normpath(args.source_path))
# 生成带有时间戳和opt属性的简洁输出目录
args.model_path = os.path.join(
"./output/", f"{last_subdir}/",
f"{last_subdir}-{current_time}"
)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
# network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.model_path)
# All done
print("\nTraining complete.")