-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgraph_preprocessing.py
558 lines (413 loc) · 21.1 KB
/
graph_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import time
import os
import os.path as osp
import networkx as nx
import itertools
from torch_geometric.data import InMemoryDataset, Data
from torch_geometric.nn import MessagePassing
from torch_geometric.utils.mask import index_to_mask, mask_to_index
from sklearn.preprocessing import StandardScaler
import numpy as np
import pandas as pd
import random
import torch
import cplex
from global_vars import *
def get_bipartite_graph(cpx_instance) -> nx.Graph:
domain_map = dict(zip(['C', 'I', 'B', 'S', 'N'], ['continuous', 'integer', 'binary', 'semi_continuous', 'semi-integer']))
n_vars = cpx_instance.get_stats().num_variables
n_cons = cpx_instance.get_stats().num_linear_constraints
var_names = cpx_instance.variables.get_names()
var_domains = list(map(domain_map.get, cpx_instance.variables.get_types()))
var_lb = cpx_instance.variables.get_lower_bounds()
var_ub = cpx_instance.variables.get_upper_bounds()
obj_multiplier = cpx_instance.objective.get_sense() # 1 if min else -1
obj_coeff = obj_multiplier * np.array(cpx_instance.objective.get_linear())
con_names = cpx_instance.linear_constraints.get_names()
shared_names = set(var_names) & set(con_names)
for shared_name in shared_names:
i = con_names.index(shared_name)
con_names[i] = "constr_" + shared_name
rhs = list(cpx_instance.linear_constraints.get_rhs())
senses = list(cpx_instance.linear_constraints.get_senses())
is_range_con = np.array(senses) == 'R'
con_multiplier = np.where(np.array(senses) == 'G', -1, 1)
changed_senses = np.where(np.array(senses) == 'E', 'E', 'L')
assert len(set(changed_senses) - {'E', 'L'}) == 0
# For handling range constraints
range_constraints = []
for c_idx, is_range in enumerate(is_range_con):
if is_range:
range_value = cpx_instance.linear_constraints.get_range_values(c_idx) # which is equal to u - l
rhs_val = rhs[c_idx]
upper_bound = max(rhs_val + range_value, rhs_val)
range_constraints.append(dict(c_idx = c_idx, con_name = con_names[c_idx], lower_bound = min(rhs_val + range_value, rhs_val)))
rhs[c_idx] = upper_bound
if len(range_constraints) > 0:
print("#range constraints:", len(range_constraints))
con_dict = dict(zip(range(n_cons), cpx_instance.linear_constraints.get_rows()))
edge_names = list(itertools.chain.from_iterable(map(lambda item: [(con_names[item[0]], var_names[i]) for i in item[1].ind], con_dict.items())))
edge_weights = list(itertools.chain.from_iterable(map(lambda item: con_multiplier[item[0]] * np.array(item[1].val), con_dict.items())))
rhs = np.array(rhs) * con_multiplier
G = nx.Graph()
G.add_nodes_from(var_names+con_names)
G.add_edges_from(edge_names)
assert len(edge_weights) == len(edge_names)
nx.set_edge_attributes(G, dict(zip(edge_names, edge_weights)), name='coeff')
nx.set_node_attributes(G, dict(zip(var_names + con_names, [0]*n_vars + [1]*n_cons)), name="bipartite")
nx.set_node_attributes(G, dict(zip(con_names, rhs)), name='rhs')
nx.set_node_attributes(G, dict(zip(con_names, changed_senses)), name='kind')
nx.set_node_attributes(G, dict(zip(var_names, var_lb)), name='lb')
nx.set_node_attributes(G, dict(zip(var_names, var_ub)), name='ub')
nx.set_node_attributes(G, dict(zip(var_names, var_domains)), name='domain')
nx.set_node_attributes(G, dict(zip(var_names, obj_coeff)), name='obj_coeff')
assert G.number_of_nodes() == n_vars + n_cons, (G.number_of_nodes(), n_vars, n_cons, np.sum(list(nx.get_node_attributes(G, 'bipartite').values())))
for range_constr in range_constraints:
c_idx = range_constr['c_idx']
con_name = range_constr['con_name']
rhs_val = range_constr['lower_bound'] * -1
new_con_name = con_name + "_left"
G.add_node(new_con_name, bipartite = 1, rhs = rhs_val, kind = "L")
var_idx_list = cpx_instance.linear_constraints.get_rows(c_idx).ind
coef_list = cpx_instance.linear_constraints.get_rows(c_idx).val
for var_idx, coeff in zip(var_idx_list, coef_list):
G.add_edge(new_con_name, var_names[var_idx], coeff=coeff*-1)
return G, con_names
def get_labeled_graph(G, instance_name, cpx_instance, solution_path):
sol_pool_path = solution_path.joinpath(instance_name + "_pool.npz")
var_names = cpx_instance.variables.get_names()
obj_multiplier = cpx_instance.objective.get_sense()
solutions_obj = np.load(sol_pool_path)['solutions']
obj_vector = obj_multiplier * solutions_obj[:,0]
incumbent_ind = np.argmin(obj_vector)
norm_obj_vector = StandardScaler().fit_transform(obj_vector.reshape(-1,1)).ravel()
solutions_matrix = solutions_obj[:,1:]
incumbent_sol_vector = solutions_matrix[incumbent_ind]
mean_bias_vector = np.mean(solutions_matrix, axis=0).ravel()
sol_weights = np.array(torch.softmax(torch.from_numpy(-norm_obj_vector), 0)).reshape(-1,1)
weighted_bias_vector = np.sum(solutions_matrix * sol_weights, 0).ravel()
assert len(var_names) == weighted_bias_vector.shape[0]
nx.set_node_attributes(G, dict(zip(var_names, incumbent_sol_vector)), name='incumbent')
nx.set_node_attributes(G, dict(zip(var_names, mean_bias_vector)), name='mean_bias')
nx.set_node_attributes(G, dict(zip(var_names, weighted_bias_vector)), name='weighted_bias')
return G
# Preprocess indices of bipartite graphs to make batching work.
class BipartiteData(Data):
def __inc__(self, key, value, *args, **kwargs):
if key in ['edge_index_var']:
return torch.tensor([self.num_var_nodes, self.num_con_nodes]).view(2, 1)
elif key in ['edge_index_con']:
return torch.tensor([self.num_con_nodes, self.num_var_nodes]).view(2, 1)
elif key in ['index_con']:
return self.num_con_nodes
elif key in ['index_var']:
return self.num_var_nodes
else:
return 0
def create_data_object(instance_name, cpx_instance, graph, is_labeled=True, save_dir=None, preprocess_start_time=None):
bipartite_vals = np.array(list(nx.get_node_attributes(graph, 'bipartite').values()))
# Number of constraints.
num_con_nodes = bipartite_vals.sum()
# Number of variables.
num_var_nodes = len(bipartite_vals) - num_con_nodes
# Maps networkx ids to new variable node ids.
var_names = cpx_instance.variables.get_names()
assert len(var_names) == num_var_nodes, f"{len(var_names)}, {num_var_nodes}, {len(bipartite_vals)}"
varnode_idx = dict(zip(var_names, range(num_var_nodes)))
# Get constraint name list from the model and add range constraint names if any.
con_names = list(cpx_instance.linear_constraints.get_names())
con_senses = np.array(list(cpx_instance.linear_constraints.get_senses()))
is_range_con = con_senses == 'R'
num_range_cons = np.sum(is_range_con)
assert len(con_names) + num_range_cons == num_con_nodes
range_con_names = list(np.array(con_names)[is_range_con])
range_con_names = [name+"_left" for name in range_con_names]
con_names = con_names + range_con_names
assert len(con_names) == num_con_nodes
# Maps networkx ids to new constraint node ids.
connode_idx = dict(zip(con_names, range(num_con_nodes)))
if is_labeled:
# Targets
y_real = pd.Series(index=range(num_var_nodes), dtype=float)
y_norm_real = pd.Series(index=range(num_var_nodes), dtype=float)
y_incumbent = pd.Series(index=range(num_var_nodes), dtype=float)
relaxed_val = pd.Series(index=range(num_var_nodes), dtype=float)
# Features for variable nodes.
feat_var = pd.Series(index=range(num_var_nodes), dtype=object)
obj = pd.Series(index=range(num_var_nodes), dtype=object)
is_binary = pd.Series(index=range(num_var_nodes), dtype=bool)
lb = pd.Series(index=range(num_var_nodes), dtype=float)
ub = pd.Series(index=range(num_var_nodes), dtype=float)
# Feature for constraints nodes.
feat_con = pd.Series(index=range(num_con_nodes), dtype=object)
# Right-hand sides of equations.
rhs = pd.Series(index=range(num_con_nodes), dtype=object)
# Kinds of equations: 1: <=, 0: ==
con_kind = pd.Series(index=range(num_con_nodes), dtype=object)
# Dual values for equations.
dual_val = pd.Series(index=range(num_con_nodes), dtype=object)
index_con = []
index_var = []
# Iterate over nodes, and collect features.
for i, node_data in graph.nodes(data=True):
# Node is a variable node.
if node_data['bipartite'] == 0:
index_var.append(0)
isb = node_data['domain'] == 'binary'
isc = node_data['domain'] == 'continuous'
isi = node_data['domain'] == 'integer'
is_binary[varnode_idx[i]] = isb
lb_, ub_ = node_data['lb'], node_data['ub']
assert ub_ >= lb_
lb[varnode_idx[i]] = lb_
ub[varnode_idx[i]] = ub_
if is_labeled:
w_bias = node_data['weighted_bias']
incumbent = node_data['incumbent']
y_real[varnode_idx[i]] = w_bias
if abs(ub_ - lb_) > 1e-6:
norm_bias = (w_bias-lb_)/(ub_-lb_)
norm_incumbent = (incumbent-lb_)/(ub_-lb_)
if not (0 <= norm_bias <= 1):
w_bias = np.clip(w_bias, lb_, ub_)
norm_bias = (w_bias-lb_)/(ub_-lb_)
y_norm_real[varnode_idx[i]] = norm_bias
if not (0 <= norm_incumbent <= 1):
incumbent = np.clip(incumbent, lb_, ub_)
norm_incumbent = (incumbent-lb_)/(ub_-lb_)
y_incumbent[varnode_idx[i]] = norm_incumbent
else:
if ub_ == 0 and lb_ == 0:
y_norm_real[varnode_idx[i]] = 0
y_incumbent[varnode_idx[i]] = 0
else:
y_norm_real[varnode_idx[i]] = 1
y_incumbent[varnode_idx[i]] = 1
assert (0 <= y_incumbent[varnode_idx[i]] <= 1) & (0 <= y_norm_real[varnode_idx[i]] <= 1)# & (0 <= relaxed_val[varnode_idx[i]] <= 1)
feat_var[varnode_idx[i]] = [int(isb), int(isc), int(isi), node_data['obj_coeff'], graph.degree[i]]
obj[varnode_idx[i]] = [node_data['obj_coeff']]
# Node is constraint node.
elif node_data['bipartite'] == 1:
i = i.replace('constr_', '')
index_con.append(0)
rhs_val = node_data['rhs']
kind = node_data['kind'] == 'L'
rhs[connode_idx[i]] = [rhs_val]
con_kind[connode_idx[i]] = [float(kind)]
feat_con[connode_idx[i]] = [float(kind), rhs_val, graph.degree[i]]
else:
print("Error in graph format.")
exit(-1)
# Edge list for var->con graphs.
edge_list_var = []
# Edge list for con->var graphs.
edge_list_con = []
# Create features matrices for variable nodes.
edge_features_var = []
# Create features matrices for constraint nodes.
edge_features_con = []
# Remark: graph is directed, i.e., each edge exists for each direction.
# Flow of messages: source -> target.
for s, t, edge_data in graph.edges(data=True):
if graph.nodes[s]['bipartite'] == 1:
con_name = s
var_name = t
else:
con_name = t
var_name = s
con_name = con_name.replace('constr_', '')
# Source node is constraint. C->V.
edge_list_con.append([connode_idx[con_name], varnode_idx[var_name]])
edge_features_con.append([edge_data['coeff']])
# Source node is variable. V->C.
edge_list_var.append([varnode_idx[var_name], connode_idx[con_name]])
edge_features_var.append([edge_data['coeff']])
# Create data object.
data = BipartiteData()
data.instance_name = instance_name
data.obj = torch.tensor(obj, dtype=torch.float)
data.is_binary = torch.tensor(is_binary, dtype=torch.bool)
data.lb = torch.tensor(lb, dtype=torch.float)
data.ub = torch.tensor(ub, dtype=torch.float)
if is_labeled:
data.y_real = torch.tensor(y_real, dtype=torch.float)
data.y_norm_real = torch.tensor(y_norm_real, dtype=torch.float)
data.y_incumbent = torch.tensor(y_incumbent, dtype=torch.float)
data.var_node_features = torch.tensor(feat_var, dtype=torch.float)
data.con_node_features = torch.tensor(feat_con, dtype=torch.float)
data.rhs = torch.tensor(rhs, dtype=torch.float)
data.con_kind = torch.tensor(con_kind, dtype=torch.float)
data.edge_features_con = torch.tensor(edge_features_con, dtype=torch.float)
data.edge_features_var = torch.tensor(edge_features_var, dtype=torch.float)
data.num_var_nodes = torch.tensor(num_var_nodes)
data.num_con_nodes = torch.tensor(num_con_nodes)
data.edge_index_var = torch.tensor(edge_list_var, dtype=torch.long).t().contiguous()
data.edge_index_con = torch.tensor(edge_list_con, dtype=torch.long).t().contiguous()
data.index_con = torch.tensor(index_con, dtype=torch.long)
data.index_var = torch.tensor(index_var, dtype=torch.long)
if is_labeled:
Ax, violation = constraint_valuation(data.y_incumbent, data.edge_index_var, data.edge_features_var, data.rhs, data.lb, data.ub, data.con_kind, (data.num_var_nodes, data.num_con_nodes))
data.Ax = Ax
if violation.max() > 1e-5:
print(">>>", instance_name, str(violation.max()))
if preprocess_start_time:
data.process_time = time.time() - preprocess_start_time
if save_dir:
torch.save(data, osp.join(save_dir, f'{instance_name}_data.pt'))
print(instance_name, "data created in", round(time.time()-preprocess_start_time, 2), "seconds.")
return data
# Preprocessing to create Torch dataset
class GraphDataset(InMemoryDataset):
def __init__(self, prob_name, dt_type, dt_name, instance_dir, graph_dir, instance_names, transform=None, pre_transform=None, pre_filter=None):
self.prob_name = prob_name
self.dt_name = dt_name
self.dt_type = dt_type
self.instance_dir = instance_dir
self.graph_dir = graph_dir
self.instance_names = instance_names
super(GraphDataset, self).__init__(str(graph_dir), transform, pre_transform, pre_filter)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_file_names(self):
return self.instance_names
@property
def processed_file_names(self):
return [self.dt_name]
def download(self):
pass
def process(self):
data_list = []
for i, instance_name in enumerate(self.instance_names):
data_file = f'{instance_name}_data.pt'
graph_path = self.graph_dir.joinpath(instance_name + "_labeled_graph.pkl")
instance = self.instance_dir.joinpath(instance_name + INSTANCE_FILE_TYPES[self.prob_name])
if data_file in os.listdir(self.processed_dir):
print(data_file, "available")
data = torch.load(self.processed_dir+ "/"+ data_file)
else:
cpx_instance = cplex.Cplex(str(instance))
graph = nx.read_gpickle(graph_path)
is_labeled = self.dt_type in ['train', 'val']
data = create_data_object(instance_name, cpx_instance, graph, is_labeled, self.processed_dir)
data_list.append(data)
random.shuffle(data_list)
all_data, slices = self.collate(data_list)
torch.save((all_data, slices), self.processed_paths[0])
def get(self, idx):
data = super(GraphDataset, self).get(idx)
return idx, data
def scale_node_degrees(data_obj):
idx, data = data_obj
if 'is_transformed' in data:
return data_obj
if data.num_con_nodes > 0:
norm_con_degree = node_degree_scaling(data.edge_index_var, (data.num_var_nodes, data.num_con_nodes))
data.con_node_features[:, -1] = norm_con_degree.view(-1)
norm_var_degree = node_degree_scaling(data.edge_index_con, (data.num_con_nodes, data.num_var_nodes))
data.var_node_features[:, -1] = norm_var_degree.view(-1)
else:
data.var_node_features[:, -1] = 0
data.is_transformed = True
return idx, data
def node_degree_normalization(data):
if data.num_con_nodes > 0:
norm_con_degree = node_degree_scaling(data.edge_index_var, (data.num_var_nodes, data.num_con_nodes))
data.con_node_features[:,-1] = norm_con_degree
norm_var_degree = node_degree_scaling(data.edge_index_con, (data.num_con_nodes, data.num_var_nodes))
data.var_node_features[:, -1] = norm_var_degree
else:
data.var_node_features[:, -1] = 0
return data
def Abc_normalization(data):
# Normalization of constraint matrix
norm_rhs, max_coeff = normalize_rhs(data.edge_index_var, data.edge_features_var, data.rhs, (data.num_var_nodes, data.num_con_nodes))
data.rhs = norm_rhs
data.con_node_features[:, 1] = norm_rhs.view(-1)
data.edge_features_var /= max_coeff[data.edge_index_var[1]]
data.edge_features_con /= max_coeff[data.edge_index_con[0]]
# Normalization of objective coefficients
data.obj /= data.obj.abs().max()
data.var_node_features[:,-2] = data.obj.view(-1)
return data
def AbcNorm(data_obj):
if isinstance(data_obj, tuple):
idx, data = data_obj
else:
data = data_obj
if 'is_transformed' in data:
return data
data = data.clone()
# Normalizing A, b, and c coefficients
data = Abc_normalization(data)
# Node degree normalization
data = node_degree_normalization(data)
if 'dual_val' in data:
data.dual_val /= data.dual_val.abs().max()
if 'relaxed_sol_val' in data:
data.relaxed_sol_val /= data.relaxed_sol_val.abs().max()
data.is_transformed = True
if isinstance(data_obj, tuple):
return idx, data
return data
class NormalizeRHS(MessagePassing):
def __init__(self):
super(NormalizeRHS, self).__init__(aggr="max", flow="source_to_target")
def forward(self, edge_index, coeff, rhs, size):
abs_coeff = self.propagate(edge_index, edge_attr=coeff, size=size)
abs_rhs = torch.abs(rhs)
max_coeff = torch.cat((abs_coeff, abs_rhs), dim=-1).max(dim=-1).values.view(-1,1)
norm_rhs = rhs/max_coeff
return norm_rhs, max_coeff
def message(self, edge_attr):
return torch.abs(edge_attr)
class NodeDegreeScaling(MessagePassing):
def __init__(self):
super(NodeDegreeScaling, self).__init__(aggr="add", flow="source_to_target")
def forward(self, edge_index, size):
connected = torch.ones((size[0], 1), dtype=torch.float)
node_degree = self.propagate(edge_index, connected=connected, size=size)
norm_node_degree = node_degree / node_degree.max()
return norm_node_degree.view(-1)
def message(self, connected_j):
return connected_j
class NodeDegreeCalculation(MessagePassing):
def __init__(self):
super(NodeDegreeCalculation, self).__init__(aggr="add", flow="source_to_target")
def forward(self, edge_index, size):
connected = torch.ones((size[0], 1), dtype=torch.float, device=DEVICE)
total_degree = self.propagate(edge_index, connected=connected, size=size)
return total_degree
def message(self, connected_j):
return connected_j
class ConstraintValuation(MessagePassing):
def __init__(self):
super(ConstraintValuation, self).__init__(aggr="add", flow="source_to_target")
def forward(self, assignment, edge_index, coeff, rhs, lb, ub, con_kind, size):
# con_kind = 1 for less than constraints (<=) and con_kind = 0 for equality constraints (=)
if lb is None or ub is None:
x = assignment
else: # assignment is decision values normalized between lb and ub
x = (assignment * (ub-lb) + lb).view(-1,1)
Ax = self.propagate(edge_index, x=x, edge_attr=coeff, size=size)
difference = Ax-rhs
violation = torch.relu(difference) * con_kind + torch.abs(difference) * (1 - con_kind)
return Ax, violation
def message(self, x_j, edge_attr):
return x_j * edge_attr
def update(self, aggr_out):
return aggr_out
class SumViolation(MessagePassing):
def __init__(self):
super(SumViolation, self).__init__(aggr="add", flow="source_to_target")
def forward(self, violation, edge_index, size):
output = self.propagate(edge_index, x=violation, size=size)
return output
def message(self, x_j):
return x_j
def update(self, aggr_out):
return aggr_out
normalize_rhs = NormalizeRHS()
node_degree_scaling = NodeDegreeScaling()
get_node_degrees = NodeDegreeCalculation()
constraint_valuation = ConstraintValuation()
sum_violation = SumViolation()