-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_dpth_method.py
342 lines (275 loc) · 14.1 KB
/
evaluate_dpth_method.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# Copyright 2020 Magic Leap, Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Originating Author: Zak Murez (zak.murez.com)
import argparse
import json
import os
import open3d as o3d
import numpy as np
import pyrender
import torch
import trimesh
from vPlaneRecover.data import SceneDataset, parse_splits_list
from vPlaneRecover.evaluation import eval_tsdf, eval_mesh, eval_depth, project_to_mesh
import vPlaneRecover.transforms as transforms
from vPlaneRecover.tsdf import TSDF, TSDFFusion
from visualize_metrics import visualize
from collections import defaultdict
from glob import glob
import cv2
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
class Renderer():
"""OpenGL mesh renderer
Used to render depthmaps from a mesh for 2d evaluation
"""
def __init__(self, height=480, width=640):
self.renderer = pyrender.OffscreenRenderer(width, height)
self.scene = pyrender.Scene()
#self.render_flags = pyrender.RenderFlags.SKIP_CULL_FACES
def __call__(self, height, width, intrinsics, pose, mesh):
self.renderer.viewport_height = height
self.renderer.viewport_width = width
self.scene.clear()
self.scene.add(mesh)
cam = pyrender.IntrinsicsCamera(cx=intrinsics[0, 2], cy=intrinsics[1, 2],
fx=intrinsics[0, 0], fy=intrinsics[1, 1])
self.scene.add(cam, pose=self.fix_pose(pose))
return self.renderer.render(self.scene)#, self.render_flags)
def fix_pose(self, pose):
# 3D Rotation about the x-axis.
t = np.pi
c = np.cos(t)
s = np.sin(t)
R = np.array([[1, 0, 0],
[0, c, -s],
[0, s, c]])
axis_transform = np.eye(4)
axis_transform[:3, :3] = R
return pose@axis_transform
def mesh_opengl(self, mesh):
return pyrender.Mesh.from_trimesh(mesh)
def delete(self):
self.renderer.delete()
def reproject_with_depth(depth_ref, intrinsics_ref, extrinsics_ref, depth_src, intrinsics_src, extrinsics_src, coord_2d):
width, height = depth_ref.shape[1], depth_ref.shape[0]
## step1. project reference pixels to the source view
# reference view x, y
x_ref, y_ref = np.meshgrid(np.arange(0, width), np.arange(0, height))
x_ref, y_ref = x_ref.reshape([-1]), y_ref.reshape([-1])
# x_ref = coord_2d[:1]
# reference 3D space
xyz_ref = np.matmul(np.linalg.inv(intrinsics_ref),
coord_2d * depth_ref.reshape([-1]))
# source 3D space
xyz_src = np.matmul(np.matmul(np.linalg.inv(extrinsics_src), (extrinsics_ref)), #scannet pose * cam = world
np.vstack((xyz_ref, np.ones_like(x_ref))))[:3]
# source view x, y
K_xyz_src = np.matmul(intrinsics_src, xyz_src)
xy_src = K_xyz_src[:2] / K_xyz_src[2:3]
## step2. reproject the source view points with source view depth estimation
# find the depth estimation of the source view
x_src = xy_src[0].reshape([height, width]).astype(np.float32)
y_src = xy_src[1].reshape([height, width]).astype(np.float32)
sampled_depth_src = cv2.remap(depth_src, x_src, y_src, interpolation=cv2.INTER_LINEAR) # like grid_sample
# mask = sampled_depth_src > 0
# source 3D space
# NOTE that we should use sampled source-view depth_here to project back
xyz_src = np.matmul(np.linalg.inv(intrinsics_src),
np.vstack((xy_src, np.ones_like(x_ref))) * sampled_depth_src.reshape([-1]))
# reference 3D space
xyz_reprojected = np.matmul(np.matmul(np.linalg.inv(extrinsics_ref), extrinsics_src),
np.vstack((xyz_src, np.ones_like(x_ref))))[:3]
# source view x, y, depth
depth_reprojected = xyz_reprojected[2].reshape([height, width]).astype(np.float32)
K_xyz_reprojected = np.matmul(intrinsics_ref, xyz_reprojected)
xy_reprojected = K_xyz_reprojected[:2] / K_xyz_reprojected[2:3]
x_reprojected = xy_reprojected[0].reshape([height, width]).astype(np.float32)
y_reprojected = xy_reprojected[1].reshape([height, width]).astype(np.float32)
return depth_reprojected, x_reprojected, y_reprojected, x_src, y_src
def check_geometric_consistency(depth_ref, intrinsics_ref, extrinsics_ref, depth_src, intrinsics_src, extrinsics_src,
geo_pixel_thres, geo_depth_thres, coord_2d):
width, height = depth_ref.shape[1], depth_ref.shape[0]
x_ref, y_ref = np.meshgrid(np.arange(0, width), np.arange(0, height))
depth_reprojected, x2d_reprojected, y2d_reprojected, x2d_src, y2d_src = reproject_with_depth(depth_ref, intrinsics_ref,
extrinsics_ref,
depth_src, intrinsics_src, extrinsics_src, coord_2d)
# print(depth_ref.shape)
# print(depth_reprojected.shape)
# check |p_reproj-p_1| < 1
dist = np.sqrt((x2d_reprojected - x_ref) ** 2 + (y2d_reprojected - y_ref) ** 2)
# check |d_reproj-d_1| / d_1 < 0.01
# depth_ref = np.squeeze(depth_ref, 2)
depth_diff = np.abs(depth_reprojected - depth_ref)
relative_depth_diff = depth_diff / depth_ref
mask = np.logical_and(dist < geo_pixel_thres, relative_depth_diff < geo_depth_thres)
depth_reprojected[~mask] = 0
return mask, depth_reprojected, x2d_src, y2d_src
def process(info_file, tsdf_pth, gt_pth, dpth_pth, save_path, total_scenes_index, total_scenes_count):
# gt loader
width, height = 640, 480
transform = transforms.Compose([
transforms.ResizeImage((width,height)),
transforms.ToTensor(),
])
dataset = SceneDataset(info_file, transform, frame_types=['depth'])
# dataloader = torch.utils.data.DataLoader(dataset, batch_size=None,
# batch_sampler=None, num_workers=2)
scene = dataset.info['scene']
# get info about tsdf
file_tsdf_pred = os.path.join(tsdf_pth, scene, 'tsdf_08.npz')
temp = TSDF.load(file_tsdf_pred)
voxel_size = int(temp.voxel_size*100)
# re-fuse to remove hole filling since filled holes are penalized in
# mesh metrics, but do nothing if the hole is not caused by visiablity
vol_dim = list(temp.tsdf_vol.shape)
origin = temp.origin
tsdf_fusion = TSDFFusion(vol_dim, float(voxel_size) / 100, origin, color=False)
device = tsdf_fusion.device
pose_list = sorted(glob(gt_pth + '/pose/*.txt'), key= lambda x: int(os.path.basename(x)[:-4]))
x_ref, y_ref = np.meshgrid(np.arange(0, width), np.arange(0, height))
x_ref, y_ref = x_ref.reshape([-1]), y_ref.reshape([-1])
coord_2d = np.vstack((x_ref, y_ref, np.ones_like(x_ref)))
with open(os.path.join(gt_pth, '%s.txt' % scene)) as info_f:
info = [line.rstrip().split(' = ') for line in info_f]
info = {key: value for key, value in info}
intrinsics = [
[float(info['fx_depth']), 0, float(info['mx_depth'])],
[0, float(info['fy_depth']), float(info['my_depth'])],
[0, 0, 1]]
K = torch.tensor(intrinsics).to(device).float()
src_depth_est = []
src_extrinsics = []
geo_pixel_thres = 1.5
geo_depth_thres = 0.015
for i, pose_pth in enumerate(pose_list):
if i % 25 == 0:
print(total_scenes_index, total_scenes_count, scene, i, len(pose_list))
frm_name = os.path.basename(pose_pth)[:-4]
pred_dpth_pth = os.path.join(dpth_pth, scene, 'refined_depth', frm_name +'.npy')
if not os.path.isfile(pred_dpth_pth): continue
pred_dpth = np.float32(np.load(pred_dpth_pth ).squeeze())
dpth_prob = np.float32(np.load(pred_dpth_pth.replace('refined_depth', 'refined_prob')).squeeze())
# pred_dpth[dpth_prob < 0.05] = 0
pred_depth = cv2.resize(pred_dpth, (width, height), cv2.INTER_LINEAR)
# pred_dpth = torch.as_tensor(pred_depth).to(device)
# dpth_prob = np.float32(np.load(pred_dpth_pth).squeeze())
# pred_depth = cv2.resize(pred_dpth, (width, height), cv2.INTER_LINEAR)
# dh, dw = pred_dpth.shape
# K[0] *= dw / width
# K[1] *= dh / height
pose = np.loadtxt(pose_pth)
T = torch.from_numpy(pose).to(device).float()
if len(src_depth_est) >= 2:
final_dpth = np.zeros_like(pred_depth)
val_mask = np.zeros_like(pred_depth)
for src_dpth , src_T in zip(src_depth_est, src_extrinsics):
geo_mask, depth_reprojected, x2d_src, y2d_src = check_geometric_consistency(pred_depth, K.cpu().numpy(),
pose,
src_dpth,
K.cpu().numpy(), src_T,
geo_pixel_thres,
geo_depth_thres,
coord_2d)
final_dpth += depth_reprojected
val_mask += geo_mask
final_dpth[val_mask < 2] = 0
final_dpth[val_mask >=2] /= val_mask[val_mask>=2]
# final_est = (depth_reprojected + pred_depth) / 2
# final_est[geo_mask] = 0
tsdf_fusion.integrate((K @ T.inverse()[:3, :]).to(device),
torch.as_tensor(final_dpth).to(device)
)
# else:
# final_est = pred_depth
if len(src_depth_est) < 2:
src_depth_est.append(pred_depth.copy())
src_extrinsics.append(pose.copy())
else:
src_depth_est = src_depth_est[1:] + [pred_depth.copy()]
src_extrinsics = src_extrinsics[1:] + [pose.copy()]
# save trimed mesh
file_mesh_trim = os.path.join(save_path, '%s_dpth_fuse.ply'%scene)
tsdf_fusion.get_tsdf().get_mesh('eval')['eval'].export(file_mesh_trim)
# eval tsdf
# file_tsdf_trgt = dataset.info['file_name_vol_%02d'%voxel_size]
# metrics_tsdf = eval_tsdf(file_tsdf_pred, file_tsdf_trgt)
# eval trimed mesh
eval_mesh_pth = file_mesh_trim
file_mesh_trgt = dataset.info['file_name_mesh_gt']
metrics_mesh, prec_err_pcd, recal_err_pcd = eval_mesh(eval_mesh_pth, file_mesh_trgt) #
o3d.io.write_point_cloud( os.path.join(save_path,'%s_precErr.ply'%scene), prec_err_pcd)
o3d.io.write_point_cloud(os.path.join(save_path, '%s_recErr.ply' % scene), recal_err_pcd)
metrics = { **metrics_mesh}
print(metrics)
rslt_file = os.path.join(save_path, '%s_metrics.json'%scene)
json.dump(metrics, open(rslt_file, 'w'))
return scene, metrics
def main():
parser = argparse.ArgumentParser(description="Atlas Testing")
parser.add_argument("--dataset", default='/data/ScanNet/ScanNet_raw_data/scannet/scans/', metavar="FILE",
help="path to checkpoint")
parser.add_argument("--depth_pred", default='/data/Fengting/ESTDepth_M2/', metavar="FILE",
help="path to checkpoint")
parser.add_argument("--gt_tsdf", default='/data/ScanNet/planeMVS_data/scannet/scans/', metavar="FILE",
help="path to checkpoint")
parser.add_argument("--scenes", default="meta_file/scannet_val.txt",#test
help="which scene(s) to run on")
parser.add_argument("--trim", default=True,#test
help="which scene(s) to run on")
args = parser.parse_args()
eval_pth = os.path.join(args.depth_pred, '3D_eval')
if not os.path.isdir(eval_pth):
os.makedirs(eval_pth)
# get all the info_file.json's from the command line
# .txt files contain a list of info_file.json's
info_files = parse_splits_list(args.scenes)
# info_files=[info_files[0]]
metrics = {}
failed_scene = 0
for i, info_file in enumerate(info_files):
# do not if json exists
scene = os.path.basename(os.path.dirname(info_file))
rslt_file = os.path.join(args.depth_pred, '3D_eval', '%s_metrics.json' % scene)
if os.path.isfile(rslt_file):
temp = json.load(open(rslt_file))
else:
# run model on each scene
gt_pth = os.path.join(args.dataset, scene)
scene, temp = process(info_file, args.gt_tsdf, gt_pth, args.depth_pred, eval_pth, i, len(info_files))
# We do not count the scene if it is total failed
if temp is not None:
metrics[scene] = temp
else:
failed_scene += 1
rslt_file = os.path.join(args.depth_pred, 'metrics.json')
json.dump(metrics, open(rslt_file, 'w'))
# display results
visualize(rslt_file)
print('#failed scenes: %d'%failed_scene)
if __name__ == "__main__":
main()
# # zip up semseg results for benchmark submission
# cmd = 'zip -j %s/semseg.zip %s/*.txt'%(save_path, save_path)
# os.system(cmd)
# # pretty print metrics
# print()
# metrics_keys = list(list(metrics.values())[0].keys())
# print(''.join( [key.ljust(15) for key in ['scene']+metrics_keys] ))
# for scene, metrics_i in metrics.items():
# metrics_i_fmt = ['%03.3f'%value for value in metrics_i.values()]
# print(''.join([s.ljust(15) for s in [scene]+metrics_i_fmt]))
# metrics_avg = [np.mean([metrics[scene][key] for scene in metrics.keys()])
# for key in metrics_keys]
# print()
# metrics_avg_fmt = ['%03.3f'%value for value in metrics_avg]
# print(''.join([s.ljust(15) for s in ['average']+metrics_avg_fmt]))