-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
78 lines (60 loc) · 2.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# main code
import os
import pytorch_lightning as pl
from pytorch_lightning import seed_everything
from pytorch_lightning.callbacks import LearningRateMonitor
import torch
from vPlaneRecover.config import get_parser, get_cfg
from vPlaneRecover.logger import AtlasLogger
from vPlaneRecover.model import vPlaneRecNet
seed_everything(1115)
# FIXME: should not be necessary, but something is remaining
# in memory between train and val
class CudaClearCacheCallback(pl.Callback):
def on_train_start(self, trainer, pl_module):
torch.cuda.empty_cache()
def on_validation_start(self, trainer, pl_module):
torch.cuda.empty_cache()
def on_validation_end(self, trainer, pl_module):
torch.cuda.empty_cache()
if __name__ == "__main__":
args = get_parser().parse_args()
cfg = get_cfg(args)
model = vPlaneRecNet(cfg)
# read train/val amount
with open(cfg.DATASETS_TRAIN[0]) as f:
a = f.readlines()
with open(cfg.DATASETS_VAL[0]) as f:
b = f.readlines()
print('train',len(a), 'val',len(b))
save_path = os.path.join(cfg.LOG_DIR, cfg.TRAINER.NAME, cfg.TRAINER.VERSION +
'_lr{}_bz{}_ep{}_nfrm{}_resnet{}'.format(cfg.OPTIMIZER.ADAM.LR,
int(cfg.DATA.BATCH_SIZE_TRAIN * cfg.TRAINER.NUM_GPUS), cfg.TRAINER.NUM_EPOCH,
cfg.DATA.NUM_FRAMES_TRAIN, cfg.MODEL.RESNETS.DEPTH ))
if not os.path.isdir(save_path):
os.makedirs(save_path)
logger = AtlasLogger(cfg.LOG_DIR, cfg.TRAINER.NAME, cfg.TRAINER.VERSION +
'_lr{}_bz{}_ep{}_nfrm{}_resnet{}'.format(cfg.OPTIMIZER.ADAM.LR,
int(cfg.DATA.BATCH_SIZE_TRAIN * cfg.TRAINER.NUM_GPUS),
cfg.TRAINER.NUM_EPOCH,
cfg.DATA.NUM_FRAMES_TRAIN, cfg.MODEL.RESNETS.DEPTH))
lr_monitor = LearningRateMonitor(logging_interval='step')
checkpoint_callback = pl.callbacks.ModelCheckpoint(
dirpath=save_path,
filename='{epoch:03d}_{step:08d}',
save_top_k=-1,
period=cfg.TRAINER.CHECKPOINT_PERIOD)
# the pytorch lighting run val first and then train and finally val again (my observation)
trainer = pl.Trainer(
logger=logger,
# checkpoint_callback=checkpoint_callback,
resume_from_checkpoint = cfg.RESUME_CKPT,
check_val_every_n_epoch=cfg.TRAINER.CHECKPOINT_PERIOD,
callbacks=[CudaClearCacheCallback(), checkpoint_callback, lr_monitor],
distributed_backend='ddp',
max_epochs=cfg.TRAINER.NUM_EPOCH,
benchmark=True,
gpus= cfg.TRAINER.NUM_GPUS,
precision=cfg.TRAINER.PRECISION,
amp_level='O1')
trainer.fit(model)