-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmovementdataBurstingWRIRnewNorthern.R
153 lines (105 loc) · 5.27 KB
/
movementdataBurstingWRIRnewNorthern.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
library(tidyverse)
library(data.table)
library(lubridate)
library(Hmisc)
library(sf)
library(mapview)
library(raster)
library(velox)
setwd("C:/Users/MiddletonLab/Desktop/Gabe/Box Sync/Elk/Working Lands")
#start ids in 2000s
northernSensAni <- fread("../movementData/newNorthern/gpsSensorsAnimals.csv")
northernGPS <- fread("../movementData/newNorthern/gps.csv")
northern <- northernSensAni %>% dplyr::select(animals_code, gps_sensors_code) %>%
mutate(gps_sensors_animals_id = 2000 + animals_code) %>% merge(
northernGPS %>% dplyr::select(gps_sensors_code, acquisition_time, longitude, latitude, dop)
) %>% mutate(herd = "Northern") %>% dplyr::select(gps_sensors_animals_id, everything())
#fwrite(northern, "../movementData/newNorthern/cleanedNewNorthernForLaura.csv")
wrirSensAni <- fread("../movementData/WRIR/sensorsAnimals.csv")
wrirGPS <- fread("../movementData/WRIR/gps.csv")
wrir <- wrirSensAni %>% dplyr::select(animals_code, gps_sensors_code) %>%
mutate(row = seq(1, nrow(.)), gps_sensors_animals_id = 3000 + row) %>%
dplyr::select(-row) %>% merge(
wrirGPS %>% dplyr::select(gps_sensors_code, acquisition_time, longitude, latitude, dop)
) %>% mutate(herd = "WRIR") %>% dplyr::select(gps_sensors_animals_id, everything())
all <- rbind(northern, wrir)
#bursting with elk years starting in december
#winter range 1 is dec 1- march
#summer range is july 1-sep 15
#winter range 2 is dec 1 - march
#15 days in both winter ranges as well as summer ranges
getBursts <- function(id) {
ind <- all %>% filter(gps_sensors_animals_id == id)
startMonth <- month(min(ind$acquisition_time))
if(startMonth < 12) {
startYear <- year(min(ind$acquisition_time)) - 1
} else {
startYear <- year(min(ind$acquisition_time))
}
decStart <- ymd(paste0(startYear, "-12-1"))
#creating a table that matches time intervals of dec 1, start - dec 31, start + 1 to elk-years
numYears <- ceiling(as.numeric(difftime(date(max(ind$acquisition_time)), decStart, units = "weeks"))/52)
winterStarts <- seq.Date(from = decStart, by = "1 year", length.out = numYears + 1)
winterEnds <- seq.Date(from = ymd(paste0(startYear + 1, "-3-31")), by = "1 year", length.out = numYears + 1)
# summerStarts <- seq.Date(from = ymd(paste0(startYear + 1, "-7-1")), by = "1 year", length.out = numYears + 1)
# summerEnds <- seq.Date(from = ymd(paste0(startYear + 1, "-9-15")), by = "1 year", length.out = numYears + 1)
#bc some dates have multiple years, adding duplicate gps points for both years it has
assignYear <- function(i) {
winterInt <- interval(winterStarts[i], winterEnds[i + 1])
ind %>% filter(acquisition_time %within% winterInt) %>%
mutate(year = i, startDateYear = year(winterStarts[i])) %>% return()
}
newInd <- map_dfr(1:numYears, assignYear)
#counting number of days in winter 1, summer and winter 2
check15days <- function(y) {
#getting data from elk year
yearData <- newInd %>% filter(year == y)
#finding dec start year
startDateYear <- unique(yearData$startDateYear)
#finding winter 1 and 2 and summer dates
winterRange1 <- interval(ymd(paste0(startDateYear, "-12-1")),
ymd(paste0(startDateYear + 1, "-3-31")))
summerRange <- interval(ymd(paste0(startDateYear + 1, "-7-1")),
ymd(paste0(startDateYear + 1, "-9-15")))
winterRange2 <- interval(ymd(paste0(startDateYear + 1, "-12-1")),
ymd(paste0(startDateYear + 2, "-3-31")))
#calculating number of days
winter1days <- yearData %>% filter(acquisition_time %within% winterRange1) %>%
distinct(as_date(acquisition_time)) %>% nrow()
summerDays <- yearData %>% filter(acquisition_time %within% summerRange) %>%
distinct(as_date(acquisition_time)) %>% nrow()
winter2days <- yearData %>% filter(acquisition_time %within% winterRange2) %>%
distinct(as_date(acquisition_time)) %>% nrow()
if(winter1days >= 15 & winter2days >= 15 & summerDays >= 15) {
return(yearData)
}
}
map_dfr(1:numYears, check15days) %>% return()
}
cl <- makeCluster(12)
registerDoParallel(cl)
tic()
bursts <- foreach(id = unique(all$gps_sensors_animals_id),
.errorhandling = 'pass',
.packages = c('tidyverse', 'lubridate',
'data.table', 'Hmisc')) %dopar%
getBursts(id)
bursts2 <- rbindlist(bursts)
toc()
stopCluster(cl)
bursts2 <- bursts2 %>% mutate(elkYear = paste(gps_sensors_animals_id, year, sep = "_")) %>%
dplyr::select(elkYear, everything(), -year) %>% filter(dop < 7)
#adding elevation to all points
dem <- raster("../Switching2/covariateData/SnowData/DEM/gyaDEM.tif")
vDEM <- velox(dem)
burstSF <- bursts2 %>% st_as_sf(coords = c("longitude", "latitude"), crs = 4326) %>%
st_transform("+proj=longlat +ellps=GRS80 +no_defs")
elevation <- vDEM$extract_points(burstSF)
bursts2$elevation <- elevation
fwrite(bursts2, "newNorthernWRIRburstsCleaned.csv")
#taking only the most recent year for each elk
elkYearsToInclude <- bursts2 %>% distinct(gps_sensors_animals_id, elkYear) %>%
arrange(desc(elkYear)) %>%
distinct(gps_sensors_animals_id, .keep_all = T)
subset <- bursts2 %>% filter(elkYear %in% elkYearsToInclude$elkYear)
fwrite(subset, "newNorthernWRIRburstsCleanedSubset.csv")