-
-
Notifications
You must be signed in to change notification settings - Fork 155
/
Copy pathtensor.go
158 lines (140 loc) · 5.03 KB
/
tensor.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/*
Copyright 2017-2022 Paolo Galeone. All right reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package tfgo
import (
tf "github.com/galeone/tensorflow/tensorflow/go"
"github.com/galeone/tensorflow/tensorflow/go/op"
)
// Tensor is an high level abstraction for the
// tf.Output structure, associating a scope to the Tensor
type Tensor struct {
// Root: Each tensor maintains a pointer to the graph root
Root *op.Scope
// Path is the current Tensor full path
Path *op.Scope
// Output is the Tensor content
Output tf.Output
}
// NewTensor creates a *Tensor from a tf.Output
// Place the cloned tensor within the specified scope
func NewTensor(scope *op.Scope, tfout tf.Output) (tensor *Tensor) {
tensor = new(Tensor)
tensor.Root = scope
tensor.Path = NewScope(scope)
// Copy the tensor to a new node in the graph
tensor.Output = op.Identity(tensor.Path.SubScope("Identity"), tfout)
return tensor
}
// Check checks if the previous operation caused an error
// and thus tensor.Path.Err is not nil.
// If it's not, panics because we're defining the graph in a wrong way
func (tensor *Tensor) Check() {
err := tensor.Path.Err()
if err != nil {
panic(err.Error())
}
}
// Scope returns the scope associated to the tensor
func (tensor *Tensor) Scope() *op.Scope {
return tensor.Path
}
// Shape64 returns the shape of the tensor as []int64.
// If firstDimension is true a 4 elements slice is returned.
// Otherwise a 3 elements slice is returned.
func (tensor *Tensor) Shape64(firstDimension bool) []int64 {
dims64, _ := tensor.Output.Shape().ToSlice()
if firstDimension {
return dims64
}
return dims64[1:]
}
// Shape32 returns the shape of the tensor as []int32.
// If firstDimension is true a 4 elements slice is returned.
// Otherwise a 3 elements slice is returned.
func (tensor *Tensor) Shape32(firstDimension bool) []int32 {
dims64 := tensor.Shape64(firstDimension)
var dims32 = make([]int32, len(dims64))
for idx, dim := range dims64 {
dims32[idx] = int32(dim)
}
return dims32
}
// Dtype returns the tensor dtype
func (tensor *Tensor) Dtype() tf.DataType {
return tensor.Output.DataType()
}
// --------
// Methods returning *Tensor
// Structs that embed *Tensor should ""override"" them
// Returning their own type
// --------
// Clone returns a copy of the current tensor in a new scope
// Clone is used to create a different tensor
// from the output of an operation.
// The new node is placed at the same level of the current tensor
// it can be seen as a twin tensor
func (tensor *Tensor) Clone() *Tensor {
defer tensor.Check()
scope := NewScope(tensor.Root)
return NewTensor(scope, tensor.Output)
}
// Cast casts the current tensor to the requested dtype
func (tensor *Tensor) Cast(dtype tf.DataType) *Tensor {
defer tensor.Check()
tensor.Output = Cast(tensor.Path, tensor.Output, dtype)
return tensor
}
// Add defines the add operation between the tensor and tfout
// `tfout` dtype is converted to tensor.Dtype() before adding
func (tensor *Tensor) Add(tfout tf.Output) *Tensor {
defer tensor.Check()
s := tensor.Path.SubScope("Add")
tensor.Output = op.Add(s, tensor.Output, Cast(s, tfout, tensor.Dtype()))
return tensor
}
// Mul defines the multiplication operation between the tensor
// and `tfout`. It's the multiplication element-wise with broadcasting support.
// `tfout` dtype is converted to tensor.Dtype() before multiplying
func (tensor *Tensor) Mul(tfout tf.Output) *Tensor {
defer tensor.Check()
s := tensor.Path.SubScope("Mul")
tensor.Output = op.Mul(s, tensor.Output, Cast(s, tfout, tensor.Dtype()))
return tensor
}
// MatMul defines the matrix multiplication operation between the tensor
// and `tfout`.
// `tfout` dtype is converted to tensor.Dtype() before multiplying
func (tensor *Tensor) MatMul(tfout tf.Output) *Tensor {
defer tensor.Check()
s := tensor.Path.SubScope("MatMul")
tensor.Output = op.MatMul(s, tensor.Output, Cast(s, tfout, tensor.Dtype()))
return tensor
}
// Pow defines the pow operation x^y, where x are the tensor values
// y dtype is converted to tensor.Dtype() before executing Pow
func (tensor *Tensor) Pow(y tf.Output) *Tensor {
defer tensor.Check()
s := tensor.Path.SubScope("Pow")
tensor.Output = op.Pow(s, tensor.Output, Cast(s, y, tensor.Dtype()))
return tensor
}
// Square defines the square operation for the tensor values
func (tensor *Tensor) Square() *Tensor {
defer tensor.Check()
return tensor.Pow(op.Const(tensor.Path.SubScope("y"), 2.))
}
// Sqrt defines the square root operation for the tensor values
func (tensor *Tensor) Sqrt() *Tensor {
defer tensor.Check()
return tensor.Pow(op.Const(tensor.Path.SubScope("y"), 0.5))
}