-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexercise8.v
119 lines (103 loc) · 3.62 KB
/
exercise8.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
From elpi Require Import elpi.
From HB Require Import structures.
From mathcomp Require Import all_ssreflect ssralg poly ssrnum ssrint rat intdiv.
From mathcomp Require Import zify ring lra.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import GRing.Theory.
(**
----
** Triangular number from Exercise session 2
Use the [lia] and [nia] tactics to prove the following lemmas.
*)
Definition delta (n : nat) := (n.+1 * n)./2.
Lemma deltaS (n : nat) : delta n.+1 = delta n + n.+1.
Proof.
(*D*)rewrite /delta; lia.
(*A*)Qed.
Lemma leq_delta (m n : nat) : m <= n -> delta m <= delta n.
Proof.
(*D*)move=> lemn; apply: half_leq; nia.
(*A*)Qed.
(** Use induction and the [lia] tactic to prove the following lemma. *)
Lemma delta_square (n : nat) : (8 * delta n).+1 = n.*2.+1 ^ 2.
Proof.
(*D*)elim: n => // n IHn; rewrite deltaS mulnDr -addSn IHn; lia.
(*A*)Qed.
(**
----
** Exercise 4 from Excersise session 3
Use induction and the [nia] tactic to prove the following lemmas.
*)
Lemma gauss_ex_nat1 (n : nat) : (\sum_(i < n) i).*2 = n * n.-1.
Proof.
(*D*)elim: n => [|n IH]; first by rewrite big_ord0.
(*D*)by rewrite big_ord_recr /= doubleD {}IH; nia.
(*A*)Qed.
Lemma gauss_ex_nat2 (n : nat) : \sum_(i < n) i = (n * n.-1)./2.
Proof.
(*D*)elim: n => [|n IH]; first by rewrite big_ord0.
(*D*)rewrite big_ord_recr /= {}IH; nia.
(*A*)Qed.
(**
Use induction and the [ring] tactic to prove the following lemma (it is also
possible to use [lia] though).
_NB_: there is a bug in the [ring] tactic of Algebra Tactics that it does not
recognize [_.+1] (successor) inside [_%:R] (generic embedding of natural numbers
to ring). You have to explicitly rewrite it by the [natr1] lemma for now.
*)
Lemma gauss_ex_int1 (n : nat) (m : int) :
((\sum_(i < n) (m + i%:R)) * 2 = (m * 2 + n%:R - 1) * n%:R)%R.
Proof.
(*D*)elim: n => [|n IH]; first by rewrite big_ord0 mulr0.
(*D*)rewrite big_ord_recr /= mulrDl {}IH -natr1; ring.
(*A*)Qed.
(**
----
** Pyramidal numbers
Use induction and the [nia] tactic to prove the following lemmas.
*)
Lemma sum_squares_p1 (n : nat) :
(\sum_(i < n) i ^ 2) * 6 = n.-1 * n * (n * 2).-1.
Proof.
(*D*)elim: n => [|n IHn]; first by rewrite big_ord0.
(*D*)by rewrite mulSn add2n /= big_ord_recr /= mulnDl {}IHn; nia.
(*A*)Qed.
Lemma sum_squares_p2 (n : nat) :
\sum_(i < n) i ^ 2 = (n.-1 * n * (n * 2).-1) %/ 6.
Proof.
(*D*)elim: n => [|n IHn]; first by rewrite big_ord0.
(*D*)rewrite mulSn add2n /= big_ord_recr /= {}IHn; nia.
(*A*)Qed.
Lemma sum_cubes_p1 (n : nat) : (\sum_(i < n) i ^ 3) * 4 = (n * n.-1) ^ 2.
Proof.
(*D*)elim: n => [|n IHn]; first by rewrite big_ord0.
(*D*)rewrite big_ord_recr /= mulnDl {}IHn; nia.
(*A*)Qed.
(**
Use induction and the [lia] tactic to prove the following lemma.
_NB_: Apparently, [nia] is not powerful enough to deal with nonlinearity and
Euclidean division by 2 at the same time in this problem. You have to deal with
Euclidean division by 2 manually.
*)
Lemma sum_cubes_p2 (n : nat) : \sum_(i < n) i ^ 3 = ((n * n.-1) %/ 2) ^ 2.
Proof.
(*D*)elim: n => [|n IHn]; first by rewrite big_ord0.
(*D*)rewrite big_ord_recr /= {}IHn; case: n => //= n.
(*D*)rewrite [in RHS]mulnC -[in RHS]add2n mulnDr divnMDl // sqrnD.
(*D*)rewrite -addnA addnCA mulnCA [2 * _]mulnC divnK; first lia.
(*D*)rewrite dvdn2 oddM; lia.
(*A*)Qed.
(**
----
** Polynomials
Use the [ring] tactic to prove the following lemma.
_NB_: the [ring] tactic does not directly support the scalar multiplication
operator [(_ *: _)]. You have to explicitly rewrite them.
*)
Lemma polyeq_p1 (R : comRingType) :
(4 *: 'X^3 - 3 *: 'X + 1)%R = (('X + 1) * (2 *: 'X - 1) ^+ 2)%R :> {poly R}.
Proof.
(*D*)rewrite -!mul_polyC; ring.
(*A*)Qed.