-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
predict.py
56 lines (42 loc) · 1.85 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# coding: utf-8
from __future__ import print_function
import os
import tensorflow as tf
import tensorflow.contrib.keras as kr
from cnn_model import TCNNConfig, TextCNN
from data.cnews_loader import read_category, read_vocab
try:
bool(type(unicode))
except NameError:
unicode = str
base_dir = 'data/cnews'
vocab_dir = os.path.join(base_dir, 'cnews.vocab.txt')
save_dir = 'checkpoints/textcnn'
save_path = os.path.join(save_dir, 'best_validation') # 最佳验证结果保存路径
class CnnModel:
def __init__(self):
self.config = TCNNConfig()
self.categories, self.cat_to_id = read_category()
self.words, self.word_to_id = read_vocab(vocab_dir)
self.config.vocab_size = len(self.words)
self.model = TextCNN(self.config)
self.session = tf.Session()
self.session.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.restore(sess=self.session, save_path=save_path) # 读取保存的模型
def predict(self, message):
# 支持不论在python2还是python3下训练的模型都可以在2或者3的环境下运行
content = unicode(message)
data = [self.word_to_id[x] for x in content if x in self.word_to_id]
feed_dict = {
self.model.input_x: kr.preprocessing.sequence.pad_sequences([data], self.config.seq_length),
self.model.keep_prob: 1.0
}
y_pred_cls = self.session.run(self.model.y_pred_cls, feed_dict=feed_dict)
return self.categories[y_pred_cls[0]]
if __name__ == '__main__':
cnn_model = CnnModel()
test_demo = ['三星ST550以全新的拍摄方式超越了以往任何一款数码相机',
'热火vs骑士前瞻:皇帝回乡二番战 东部次席唾手可得新浪体育讯北京时间3月30日7:00']
for i in test_demo:
print(cnn_model.predict(i))