-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
261 lines (199 loc) · 6.39 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""
Hammerstein Recurrent Neural Network
main.py
Created on 2017/04/23
@author ken83715
"""
import csv
import math
from multiprocessing import Pool
import matplotlib.pyplot as plt
import neural
SEGLIST = []
def testing(neutest, datalist):
"""
testing the trained neural
"""
mse = 0
count = 0
for i in range(len(datalist) - neutest.inputnumber):
inputlist = []
expect = 0
for j in range(neutest.inputnumber):
inputlist.append(datalist[i + j])
expect = datalist[i + neutest.inputnumber]
result = neutest.forward(inputlist)
# print(result)
mse = mse + (expect - result[0]) * (expect - result[0])
count = count + 1
mse = math.sqrt(mse / count)
neutest.mse = mse
print('mse: ', mse)
return mse
def verifying(bestneu, datalist, rangelist):
"""
testing the best neural
"""
vermse = 0
count = 0
result = []
# maxofdata = 0
minofdata = 0
datarange = 0
# maxofdata = rangelist[0]
minofdata = rangelist[1]
datarange = rangelist[2]
# pick a day
starttestindex = 288 * 0
for i in range(283):
inputlist = []
expect = 0
for j in range(bestneu.inputnumber):
inputlist.append(datalist[starttestindex + i + j])
expect = datalist[starttestindex + i + bestneu.inputnumber]
output = bestneu.forward(inputlist)
result.append(output[0])
# print('output: ', output)
vermse = vermse + (expect - output[0]) * (expect - output[0])
count = count + 1
vermse = math.sqrt(vermse / count)
print('best mse: ', bestneu.mse)
print('verifying mse: ', vermse)
msexaxis = []
mseyaxis = []
for i in range(bestneu.count):
msexaxis.append(i)
for j in range(len(bestneu.training_MSE[0])):
mseyaxis.append(bestneu.training_MSE[0][j])
fig1 = plt.figure('fig1')
plt.plot(msexaxis, mseyaxis)
plt.xlabel("train count")
plt.ylabel("MSE")
plt.title("MSE")
predictxaxis = [0, 1, 2, 3, 4]
origyaxis = []
predictyaxis = []
for i in range(5):
origyaxis.append((datalist[starttestindex + i] + 1) / 2 * datarange + minofdata)
predictyaxis.append((datalist[starttestindex + i] + 1) / 2 * datarange + minofdata)
for i in range(283):
predictxaxis.append(i + bestneu.inputnumber)
origyaxis.append((datalist[starttestindex + i + bestneu.inputnumber] + 1) / 2 * datarange + minofdata)
for res in result:
predictyaxis.append((res + 1) / 2 * datarange + minofdata)
fig2 = plt.figure('fig2')
plt.plot(predictxaxis, origyaxis)
plt.plot(predictxaxis, predictyaxis)
plt.xlabel("time")
plt.ylabel("travel time")
plt.title("predict result")
plt.show()
return vermse
def readdata(seg):
"""
read train data from file
"""
listoriginal = []
datalist1 = []
trainfile = open('E:/大型資料/TDCS/M04A/TDCSDIVIDEBYSEGSMOOTHDAY/' + seg + '.csv', 'r')
for everyrow in csv.DictReader(trainfile):
listoriginal.append(int(everyrow['avetime']))
trainfile.close()
datamax = max(listoriginal)
datamin = min(listoriginal)
datarange = datamax - datamin
for i in listoriginal:
datalist1.append((i - datamin) / datarange * 2 - 1)
return datalist1
def maxminrange(seg):
"""
find range of data
"""
listoriginal = []
trainfile = open('E:/大型資料/TDCS/M04A/TDCSDIVIDEBYSEGSMOOTHDAY/' + seg + '.csv', 'r')
for everyrow in csv.DictReader(trainfile):
listoriginal.append(int(everyrow['avetime']))
trainfile.close()
datamax = max(listoriginal)
datamin = min(listoriginal)
datarange = datamax - datamin
maxminandrange = [datamax, datamin, datarange]
return maxminandrange
def multitraining(seg, daynum, datalist):
"""
multi-core training
"""
neutest = neural.Neu(seg, daynum)
trainfinished = False
while trainfinished != True:
try:
for i in range(neutest.epoch):
# print(i + 1)
# count = 0
for j in range(len(datalist) - neutest.inputnumber):
# print('j: ', j)
inputlist = []
expect = []
for k in range(neutest.inputnumber):
inputlist.append(datalist[j + k])
expect.append(datalist[j + neutest.inputnumber])
# print('input: ', inputlist)
# print('expect: ', expect)
result = neutest.forward(inputlist)
# print('result: ', result)
neutest.backward(expect)
# print(count)
# count = count + 1
# if count == 288:
# count = 0
neutest.cleartemporalepoch()
except OverflowError:
neutest = neural.Neu(seg, daynum)
print('math error')
else:
trainfinished = True
return neutest
def neutraining(seg, daynum):
"""
training the neural, fordward & backward
"""
datalist = readdata(seg + '-' + daynum)
rangelist = maxminrange(seg + '-' + daynum)
bestneu = neural.Neu(seg, daynum)
bestmse = 1000000000000000
trainingtime = 10
templist = []
results = []
proc = Pool(5)
for train in range(trainingtime):
print('neural: ', train + 1)
templist.append(proc.apply_async(multitraining, (seg, daynum, datalist)))
for res in templist:
results.append(res.get())
proc.close()
for neutest in results:
mse = testing(neutest, datalist)
if mse < bestmse:
bestmse = mse
bestneu = neutest
# bestneu.saveneu()
verifymse = verifying(bestneu, datalist, rangelist)
def segtraining(seg):
"""
training this segment, generate 7 neural for 7 day
"""
neutraining(seg, '0')
# neutraining(seg, '1')
# neutraining(seg, '2')
# neutraining(seg, '3')
# neutraining(seg, '4')
# neutraining(seg, '5')
# neutraining(seg, '6')
FILEOPEN = open('E:/大型資料/TDCS/IntervalCodeName.csv', 'r')
for row in csv.DictReader(FILEOPEN):
SEGLIST.append(row['start'] + '-' + row['end'])
FILEOPEN.close()
if __name__ == '__main__':
# for i in range(len(SEGLIST)):
# segtraining(SEGLIST[i])
segtraining('01F1664N-01F1621N')