Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fairer Python benchmarks #82

Merged
merged 1 commit into from
Feb 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion libs/HMMComparison/src/HMMComparison.jl
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ using HMMBenchmark:
build_model,
build_benchmarkables
using LinearAlgebra: Diagonal
using PythonCall: pyimport, pybuiltins
using PythonCall: Py, pyimport, pybuiltins, pylist
using Random: AbstractRNG
using SparseArrays: spdiagm

Expand Down
39 changes: 20 additions & 19 deletions libs/HMMComparison/src/dynamax.jl
Original file line number Diff line number Diff line change
Expand Up @@ -10,10 +10,10 @@ function HMMBenchmark.build_model(
(; nb_states, obs_dim) = instance
(; init, trans, means, stds) = build_params(rng; instance)

initial_probs = jnp.array(np.array(init))
transition_matrix = jnp.array(np.array(trans))
emission_means = jnp.array(np.array(transpose(means)))
emission_scale_diags = jnp.array(np.array(transpose(stds)))
initial_probs = jnp.array(Py(init).to_numpy())
transition_matrix = jnp.array(Py(trans).to_numpy())
emission_means = jnp.array(Py(transpose(means)).to_numpy())
emission_scale_diags = jnp.array(Py(transpose(stds)).to_numpy())

hmm = dynamax_hmm.DiagonalGaussianHMM(nb_states, obs_dim)
params, props = hmm.initialize(;
Expand All @@ -37,51 +37,52 @@ function HMMBenchmark.build_benchmarkables(
hmm, params, _ = build_model(rng, implem; instance)
data = randn(rng, nb_seqs, seq_length, obs_dim)

obs_tens_py = jnp.array(np.array(data))
obs_tens_py = jnp.array(Py(data).to_numpy())

benchs = Dict()

if "logdensity" in algos
filter_vmap = jax.vmap(hmm.filter; in_axes=pylist([pybuiltins.None, 0]))
filter_vmap = jax.jit(jax.vmap(hmm.filter; in_axes=pylist((pybuiltins.None, 0))))
benchs["logdensity"] = @benchmarkable begin
$(filter_vmap)($params, $obs_tens_py)
end evals = 1 samples = 100 setup = ($(filter_vmap)($params, $obs_tens_py))
end evals = 1 samples = 100
end

if "forward" in algos
filter_vmap = jax.vmap(hmm.filter; in_axes=pylist([pybuiltins.None, 0]))
filter_vmap = jax.jit(jax.vmap(hmm.filter; in_axes=pylist((pybuiltins.None, 0))))
benchs["forward"] = @benchmarkable begin
$(filter_vmap)($params, $obs_tens_py)
end evals = 1 samples = 100 setup = ($(filter_vmap)($params, $obs_tens_py))
end evals = 1 samples = 100
end

if "viterbi" in algos
most_likely_states_vmap = jax.vmap(
hmm.most_likely_states; in_axes=pylist([pybuiltins.None, 0])
most_likely_states_vmap = jax.jit(
jax.vmap(hmm.most_likely_states; in_axes=pylist((pybuiltins.None, 0)))
)
benchs["viterbi"] = @benchmarkable begin
$(most_likely_states_vmap)($params, $obs_tens_py)
end evals = 1 samples = 100 setup = ($(most_likely_states_vmap)(
$params, $obs_tens_py
))
end evals = 1 samples = 100
end

if "forward_backward" in algos
smoother_vmap = jax.vmap(hmm.smoother; in_axes=pylist([pybuiltins.None, 0]))
smoother_vmap = jax.jit(
jax.vmap(hmm.smoother; in_axes=pylist((pybuiltins.None, 0)))
)
benchs["forward_backward"] = @benchmarkable begin
$(smoother_vmap)($params, $obs_tens_py)
end evals = 1 samples = 100 setup = ($(smoother_vmap)($params, $obs_tens_py))
end evals = 1 samples = 100
end

if "baum_welch" in algos
benchs["baum_welch"] = @benchmarkable begin
hmm_guess.fit_em(params_guess, props_guess, $obs_tens_py; num_iters=$bw_iter)
hmm_guess.fit_em(
params_guess, props_guess, $obs_tens_py; num_iters=$bw_iter, verbose=false
)
end evals = 1 samples = 100 setup = (
tup = build_model($rng, $implem; instance=$instance);
hmm_guess = tup[1];
params_guess = tup[2];
props_guess = tup[3];
hmm_guess.fit_em(params_guess, props_guess, $obs_tens_py; num_iters=$bw_iter)
props_guess = tup[3]
)
end

Expand Down
10 changes: 5 additions & 5 deletions libs/HMMComparison/src/hmmlearn.jl
Original file line number Diff line number Diff line change
Expand Up @@ -18,10 +18,10 @@ function HMMBenchmark.build_model(
init_params="",
)

hmm.startprob_ = np.array(init)
hmm.transmat_ = np.array(trans)
hmm.means_ = np.array(transpose(means))
hmm.covars_ = np.array(transpose(stds .^ 2))
hmm.startprob_ = Py(init).to_numpy()
hmm.transmat_ = Py(trans).to_numpy()
hmm.means_ = Py(transpose(means)).to_numpy()
hmm.covars_ = Py(transpose(stds .^ 2)).to_numpy()
return hmm
end

Expand All @@ -35,7 +35,7 @@ function HMMBenchmark.build_benchmarkables(
data = randn(rng, nb_seqs, seq_length, obs_dim)

obs_mat_concat = reduce(vcat, data[k, :, :] for k in 1:nb_seqs)
obs_mat_concat_py = np.array(obs_mat_concat)
obs_mat_concat_py = Py(obs_mat_concat).to_numpy()
obs_mat_len_py = np.full(nb_seqs, seq_length)

benchs = Dict()
Expand Down
11 changes: 5 additions & 6 deletions libs/HMMComparison/src/pomegranate.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,6 @@ struct pomegranateImplem <: Implementation end
function HMMBenchmark.build_model(
rng::AbstractRNG, implem::pomegranateImplem; instance::Instance
)
np = pyimport("numpy")
torch = pyimport("torch")
torch.set_default_dtype(torch.float64)
pomegranate_distributions = pyimport("pomegranate.distributions")
Expand All @@ -12,14 +11,14 @@ function HMMBenchmark.build_model(
(; nb_states, bw_iter) = instance
(; init, trans, means, stds) = build_params(rng; instance)

starts = torch.tensor(np.array(init))
starts = torch.tensor(Py(init).to_numpy())
ends = torch.ones(nb_states) * 1e-10
edges = torch.tensor(np.array(trans))
edges = torch.tensor(Py(trans).to_numpy())

distributions = pylist([
pomegranate_distributions.Normal(;
means=torch.tensor(np.array(means[:, i])),
covs=torch.square(torch.tensor(np.array(stds[:, i] .^ 2))),
means=torch.tensor(Py(means[:, i]).to_numpy()),
covs=torch.square(torch.tensor(Py(stds[:, i] .^ 2).to_numpy())),
covariance_type="diag",
) for i in 1:nb_states
])
Expand Down Expand Up @@ -48,7 +47,7 @@ function HMMBenchmark.build_benchmarkables(
hmm = build_model(rng, implem; instance)
data = randn(rng, nb_seqs, seq_length, obs_dim)

obs_tens_py = torch.tensor(np.array(data))
obs_tens_py = torch.tensor(Py(data).to_numpy())

benchs = Dict()

Expand Down
8 changes: 5 additions & 3 deletions libs/HMMComparison/test/comparison.jl
Original file line number Diff line number Diff line change
@@ -1,6 +1,10 @@
using BenchmarkTools
using HMMComparison
using HMMBenchmark
using LinearAlgebra
using StableRNGs

BLAS.set_num_threads(1)

rng = StableRNG(63)

Expand All @@ -13,9 +17,7 @@ implems = [
]
algos = ["logdensity", "forward", "viterbi", "forward_backward", "baum_welch"]
instances = [
Instance(;
sparse=false, nb_states=5, obs_dim=10, seq_length=100, nb_seqs=50, bw_iter=10
),
Instance(; sparse=false, nb_states=5, obs_dim=10, seq_length=1000, nb_seqs=10, bw_iter=10)
]

SUITE = define_suite(rng, implems; instances, algos)
Expand Down
Loading