-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathChDistIndex.tex
475 lines (463 loc) · 27.7 KB
/
ChDistIndex.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
% !TEX encoding = UTF-8 Unicode
% !TEX root = FieldGuide.tex
\clearpage
%\onecolumngrid
\renewcommand*{\thefootnote}{\fnsymbol{footnote}}
\SecS{Index of distributions}
\thispagestyle{chapter}
\markboth{Index of distributions}{Index of distributions}
\phantomsection\addcontentsline{toc}{section}{Index of distributions}
\hbadness=10000 % turn off underfull warnings
%\twocolumngrid
\noindent
\footnotetext[8]{Citations in this table document the origin (or early usage) of the distribution name. }
\newcommand{\mcite}[1]{{\scriptsize\makebox[2.5em][r]{\cite{#1}}}\\}
\newcommand{\ncite}{{\scriptsize\makebox[2.5em][r]{~}}\\}
% Alphabetize book index order
\noindent
invert, inverted, or reciprocal \dotfill See inverse\ncite
squared \dotfill See square\ncite
of the first kind \dotfill See type I\ncite
of the second kind \dotfill See type II\ncite
~\\
\noindent
{\bf Distribution} \hfill {\bf Synonym or Equation} \ncite
%
$\beta$ \dotfill beta \ncite % checked
$\beta'$ \dotfill beta prime \ncite % checked
$\chi$ \dotfill chi \ncite % checked
$\chi^2$ \dotfill chi-square \ncite % checked
$\Gamma$ \dotfill gamma \ncite % checked
$\Lambda$ \dotfill log-normal \mcite{Aitchison1966} % checked
$\Phi$ \dotfill standard normal \ncite % checked
%
Amoroso \dotfill \eqref{Amoroso} \mcite{Kleiber2003} % checked
anchored Amoroso \dotfill Stacy \mcite{\self}
anchored exponential \dotfill See exponential \eqref{Exp} \ncite % checked
anchored log-normal \dotfill See log-normal \eqref{LogNormal} \ncite
anti-log-normal \dotfill log-normal \ncite % checked
arcsine \dotfill \eqref{Arcsine} \ncite % checked
Appell beta \dotfill \eqref{AppellBeta} \mcite{Nadarajah2006a}
ascending wedge \dotfill See wedge \eqref{Wedge} \ncite % checked
%
ballasted Pareto \dotfill Lomax \ncite % checked
Bates \dotfill \eqref{Bates} \ncite
bell curve \dotfill normal \ncite % checked
beta \dotfill \eqref{Beta} \ncite % checked
beta, J shaped \dotfill See beta \eqref{Beta} \ncite % checked
beta, U shaped \dotfill See beta \eqref{Beta} \ncite % checked
beta-exponential \dotfill \eqref{BetaExp} \ncite % checked
beta-Fisher-Tippett \dotfill \eqref{BetaFisherTippett} \ncite
beta-k \dotfill Dagum \mcite{McDonald1984} % checked
beta-kappa \dotfill Dagum \mcite{McDonald1984} % checked
beta-logistic \dotfill \eqref{BetaLogistic} \mcite{\self} % checked
beta-log-logistic \dotfill generalized beta-prime \mcite{\self} % checked
beta type I \dotfill beta \ncite % checked
beta type II \dotfill beta prime \ncite % checked
beta-P \dotfill Burr \mcite{McDonald1984} % checked
beta-pert \dotfill pert \ncite % checked
beta-power \dotfill generalized beta \ncite % checked
beta-prime \dotfill \eqref{BetaPrime} \ncite % checked
beta-prime exponential \dotfill beta-logistic \mcite{\self} % checked
biexponential \dotfill Laplace \ncite % checked
bilateral exponential \dotfill Laplace \ncite % checked
Birnbaum-Saunders \dotfill \eqref{BirnbaumSaunders} \ncite
biweight \dotfill \eqref{Biweight} \ncite
BHP \dotfill \eqref{BHP} \ncite % checked
Box-Tiao \dotfill exponential power \ncite
Bramwell-Holdsworth-Pinton \dotfill BHP \ncite % checked
Breit-Wigner \dotfill Cauchy \ncite % checked
Brody \dotfill Fisher-Tippett \ncite %
Burr \dotfill \eqref{Burr} \ncite % checked
Burr type I \dotfill uniform \ncite % checked
Burr type II \dotfill \eqref{BurrII} \ncite % checked
Burr type III \dotfill Dagum \ncite % checked
Burr type XII \dotfill Burr \ncite % checked
%
Cauchy \dotfill \eqref{Cauchy} \mcite{Stigler1974} % checked
Cauchy-Lorentz \dotfill Cauchy \ncite % checked
centered arcsine \dotfill \eqref{CenteredArcsine} \ncite % checked
central-beta \dotfill \eqref{CentralBeta} \mcite{\self}
central-logistic \dotfill \eqref{CentralLogistic} \mcite{\self}
Champernowne \dotfill Perks \ncite
chi \dotfill \eqref{Chi} \ncite % checked
chi-square \dotfill \eqref{ChiSqr} \ncite % checked
chi-square-exponential \dotfill \eqref{ChiSqrExp} \mcite{\self} % checked
circular normal \dotfill Rayleigh \ncite % checked
Coale-McNeil \dotfill gamma-exponential \mcite{Coale1972} % checked % also Kaneko2003
Cobb-Douglas \dotfill log-normal \ncite % checked
compound gamma \dotfill beta prime \mcite{Nadarajah2003} % checked
confluent hypergeometric \dotfill \eqref{Confluent} \ncite
%
Dagum \dotfill \eqref{Dagum} \ncite % checked
Dagum type I \dotfill Dagum \ncite % checked
de Moivre \dotfill normal \ncite % checked
degenerate \dotfill See uniform \eqref{Uniform} \ncite % checked
delta \dotfill degenerate \ncite % checked
descending wedge \dotfill See wedge \eqref{Wedge} \ncite % checked
Dirac \dotfill degenerate \ncite
double exponential \dotfill Gumbel or Laplace \ncite % checked
doubly exponential \dotfill Gumbel \ncite % checked
doubly noncentral F \dotfill See noncentral F \eqref{NoncentralF} \ncite
%
Epanechnikov \dotfill \eqref{Epanechnikov} \ncite
Erlang \dotfill See gamma \eqref{Gamma} \ncite % checked
error \dotfill normal \ncite % checked
error function \dotfill See normal \eqref{Normal} \ncite % checked
exponential \dotfill \eqref{Exp} \ncite % checked
exponential Burr \dotfill Burr type II \ncite % checked
exponential gamma \dotfill Burr or gamma-exponential \mcite{Dubey1970} % checked
exponential generalized beta type I \dotfill beta-exponential \mcite{McDonald1995} % checked
exponential generalized beta type II \dotfill beta-logistic \mcite{McDonald1995} % checked
exponential generalized beta prime \dotfill beta-logistic \ncite % checked
exponential power \dotfill \eqref{ExpPower} \ncite
exponential ratio \dotfill \eqref{ExpRatio} \ncite % checked
exponentiated exponential \dotfill \eqref{ExpExp} \ncite % checked
exponentiated Weibull \dotfill See Beta-Fisher-Tippett \eqref{BetaFisherTippett}\ncite % scipy
extended Pearson \dotfill \eqref{ExtPearson} \ncite
extreme value \dotfill Gumbel \ncite
extreme value type N \dotfill Fisher-Tippett type N \ncite % checked
%
F \dotfill \eqref{F} \ncite % checked
F-ratio \dotfill F \ncite % checked
fatigue life distribution \dotfill Birnbaum-Saunders \ncite
Feller-Pareto \dotfill generalized beta prime \ncite % checked
Fisher \dotfill F or Student's t \ncite % checked
Fisher-F \dotfill F \ncite % checked
Fisher-Snedecor \dotfill F \ncite % checked
Fisher-Tippett \dotfill \eqref{FisherTippett} \ncite % checked
Fisher-Tippett type I \dotfill Gumbel \ncite % checked
Fisher-Tippett type II \dotfill Fr\'{e}chet \ncite % checked
Fisher-Tippett type III \dotfill Weibull \ncite % checked
Fisher-Tippett-Gumbel \dotfill Gumbel \ncite % checked
Fisher-z \dotfill beta-logistic \ncite % checked
Fisk \dotfill log-logistic \ncite % checked
flat \dotfill uniform \ncite % checked
folded normal \dotfill See pp.~\pageref{FoldedNormal} \ncite
Fr\'{e}chet \dotfill \eqref{Frechet} \ncite % checked
FTG \dotfill Fisher-Tippett-Gumbel \ncite % checked
%
Galton \dotfill log-normal \ncite % checked
Galton-McAlister \dotfill log-normal \ncite % checked
gamma \dotfill \eqref{Gamma} \ncite % checked
gamma-exponential \dotfill \eqref{GammaExp} \ncite % checked
gamma ratio \dotfill beta prime \ncite % checked
Gaussian \dotfill normal \ncite % checked
Gauss \dotfill normal \ncite % checked
Gauss hypergeometric \dotfill \eqref{GaussHypergeometric} \ncite
generalized arcsin \dotfill central-beta \mcite{Johnson1995} % \cite{Johnson1995}
generalized beta \dotfill \eqref{GenBeta} \ncite % checked
generalized beta-exponential \dotfill beta-Fisher-Tippett \ncite
generalized beta-prime \dotfill \eqref{GenBetaPrime} \mcite{Patil1984} % See McDonald1995
generalized beta type II \dotfill generalized beta prime \mcite{McDonald1995}
generalized Cauchy \dotfill generalized Pearson type VII \ncite
generalized error \dotfill exponential power \ncite
generalized exponential \dotfill exponentiated exponential \mcite{Gupta2007} % checked
generalized extreme value \dotfill Fisher-Tippett \ncite % checked
generalized F \dotfill beta-logistic \ncite % checked
generalized Feller-Pareto \dotfill generalized beta prime \mcite{Arnold1983}
generalized Fisher-Tippett \dotfill \eqref{GenFisherTippett} \ncite % checked
generalized Fr\'{e}chet \dotfill \eqref{GenFrechet} \ncite % checked
generalized gamma \dotfill Stacy or Amoroso \ncite % checked
generalized gamma ratio \dotfill generalized beta prime \mcite{Coelho2007} % checked
generalized generalized inverse Gaussian \dotfill generalized Sichel \mcite{Shakil2010a}
generalized Gompertz \dotfill gamma-exponential \mcite{Johnson1995}
generalized Gompertz-Verhulst type I \dotfill gamma-exponential \mcite{Ahuja1967} % checked
generalized Gompertz-Verhulst type II \dotfill beta-logistic \mcite{Ahuja1967} % checked
generalized Gompertz-Verhulst type III \dotfill beta-exponential \mcite{Ahuja1967} % checked
generalized Gumbel \dotfill \eqref{GenGumbel} \ncite % checked
generalized Halphen \dotfill \eqref{GenHalphen} \ncite
generalized inverse gamma \dotfill See Stacy \eqref{Stacy} \ncite % checked
generalized inverse Gaussian \dotfill Sichel \ncite
generalized K \dotfill \eqref{GenK} \mcite{\self}
generalized log-logistic \dotfill Burr \ncite % checked
generalized logistic type I \dotfill Burr type II \ncite % checked
generalized logistic type II \dotfill reversed Burr type II \ncite % checked
generalized logistic type III \dotfill central logistic \ncite % checked
generalized logistic type IV \dotfill beta-logistic \mcite{Ahuja1967} % checked
generalized normal \dotfill Nakagami or exponential power \ncite % checked
generalized Pareto \dotfill \eqref{GenPareto} \ncite % checked
generalized Pearson type I \dotfill Nakagami \mcite{Shakil2010a}
generalized Pearson type II \dotfill generalized Sichel \mcite{Shakil2010a}
generalized Pearson type III \dotfill generalized beta prime \mcite{Shakil2010a}
generalized Pearson type VII \dotfill \eqref{GenPearsonVII} \ncite
generalized Rayleigh \dotfill scaled-chi or Rice \ncite % checked
generalized Sichel \dotfill \eqref{GenSichel} \mcite{\self}
generalized semi-normal \dotfill Stacy \mcite{Johnson1994} % checked
generalized-t \dotfill generalized Pearson type VII \ncite
generalized Weibull \dotfill \eqref{GenWeibull} or Stacy \ncite % checked
GEV \dotfill generalized extreme value \ncite % checked
Gibrat \dotfill standard log-normal \ncite % checked
Gompertz \dotfill See pp.~\pageref{Gompertz} \ncite
Gompertz-Verhulst \dotfill beta-exponential \mcite{Gupta2007} % checked
grand unified distribution \dotfill See \eqref{GUD} \mcite{\self} % checked
Grassia \dotfill unit gamma \mcite{Devroye1986}
greater grand unified distribution \dotfill \eqref{GUD} \mcite{\self}
GUD \dotfill grand unified distribution \mcite{\self} % checked
Gumbel \dotfill \eqref{Gumbel} \ncite % checked
Gumbel-Fisher-Tippett \dotfill Gumbel \ncite % checked
Gumbel type N \dotfill Fisher-Tippett type N \ncite % checked
%
half-Cauchy \dotfill \eqref{HalfCauchy} \ncite % checked
half-exponential power \dotfill \eqref{HalfExpPower} \ncite % checked
half generalized Pearson VII \dotfill \eqref{HalfGenPearsonVII} \ncite % checked
half-Laha \dotfill See half generalized Pearson VII \eqref{HalfGenPearsonVII} \mcite{\self} % checked
half-normal \dotfill \eqref{HalfNormal} \ncite % checked
half-Pearson type VII \dotfill \eqref{HalfPearsonVII} \ncite % checked
half-Subbotin \dotfill half exponential power \ncite % checked
half-t \dotfill half-Pearson type VII \ncite % checked
half-uniform \dotfill See uniform \eqref{Uniform} \ncite % checked
Halphen \dotfill \eqref{Halphen} \ncite
Halphen A \dotfill Halphen \ncite
Halphen B \dotfill \eqref{HalphenB} \ncite
harmonic \dotfill hyperbola \ncite
Hohlfeld \dotfill \eqref{Hohlfeld} \mcite{\self} % checked
Holtsmark \dotfill \eqref{Holtsmark} \ncite
hyperbola \dotfill \eqref{Hyperbola} \ncite
hyperbolic secant \dotfill \eqref{HyperbolicSecant} \ncite % checked
hyperbolic secant square \dotfill logistic \ncite % checked
hyperbolic sine \dotfill \eqref{HyperbolicSine} \mcite{\self} % checked
hydrograph \dotfill Stacy \ncite % checked
hyper gamma \dotfill Stacy \ncite % checked
%
inverse beta \dotfill beta prime \ncite % checked
inverse beta exponential \dotfill See Beta-Fisher-Tippett \eqref{BetaFisherTippett}\ncite
inverse Burr \dotfill Dagum \ncite % checked
inverse chi \dotfill \eqref{InvChi} \ncite % checked
inverse chi-square \dotfill \eqref{InvChiSqr} \ncite % checked
inverse cosh \dotfill hyperbolic secant \ncite
inverse exponential \dotfill \eqref{InvExp} or exponential \ncite % checked
inverse gamma \dotfill \eqref{InvGamma} \ncite % checked
inverse Gaussian \dotfill \eqref{InvGaussian} \ncite % checked
inverse half-normal \dotfill \eqref{InvHalfNormal} \ncite
inverse Halphen B \dotfill \eqref{InvHalphenB} \ncite
inverse hyperbolic cosine \dotfill hyperbolic secant \ncite % checked
inverse Lomax \dotfill \eqref{InvLomax} \ncite % checked
inverse Nakagami \dotfill \eqref{InvNakagami} \mcite{Louzada2018a}
inverse normal \dotfill inverse Gaussian \ncite % checked
inverse Maxwell \dotfill \eqref{InvMaxwell} \mcite{Shakil2010a}
inverse Rayleigh \dotfill \eqref{InvRayleigh} \ncite % checked
inverse paralogistic \dotfill \eqref{InvParalogistic} \ncite % checked
inverse Pareto \dotfill inverse Lomax \ncite % checked % Or power function?
inverse Weibull \dotfill Fr\'{e}chet \ncite % checked
Irwin-Hall \dotfill \eqref{IrwinHall} \ncite
%
Johnson \dotfill Johnson $S_U$ \ncite
Johnson $S_B$ \dotfill see Johnson $S_U$, \eqref{JohnsonSU} \ncite
Johnson $S_L$ \dotfill log-normal, see Johnson $S_U$, \eqref{JohnsonSU} \ncite
Johnson $S_N$ \dotfill normal, see Johnson $S_U$, \eqref{JohnsonSU} \ncite
Johnson $S_U$ \dotfill \eqref{JohnsonSU} \ncite
%
K \dotfill \eqref{K} \ncite %???
Kumaraswamy \dotfill \eqref{Kumaraswamy} \ncite % checked
%
Laha \dotfill \eqref{Laha} \ncite
Landau \dotfill \eqref{Landau} \ncite
Laplace \dotfill \eqref{Laplace} \ncite % checked
Laplace's first law of error \dotfill Laplace \ncite % checked
Laplace's second law of error \dotfill normal \ncite % checked
Laplace-Gauss \dotfill normal \ncite % checked
Laplacian \dotfill Laplace \ncite % checked
law of error \dotfill normal \ncite % checked
left triangular \dotfill descending wedge \ncite % checked
Leonard hydrograph \dotfill Stacy \ncite % checked
L\'{e}vy \dotfill \eqref{Levy} \ncite % checked
L\'evy skew alpha-stable \dotfill stable \ncite
L\'{e}vy stable \dotfill stable \ncite
L\'evy symmetric alpha-stable \dotfill See stable \eqref{Stable} \ncite
Libby-Novick \dotfill \eqref{LibbyNovick} \ncite
log-beta \dotfill beta-exponential \mcite{Jones2004} % checked
log-Cauchy \dotfill \eqref{LogCauchy} \ncite
log-chi-square \dotfill chi-square-exponential \ncite % checked
log-F \dotfill beta-logistic \ncite % checked
log-gamma \dotfill gamma-exponential or unit-gamma \ncite % checked
log-Gaussian \dotfill log-normal \ncite % checked
log-Gumbel \dotfill Fisher-Tippett \ncite %
log-logistic \dotfill \eqref{LogLogistic} \ncite % checked
log-normal \dotfill \eqref{LogNormal} \ncite % checked
log-normal, two parameter \dotfill anchored log-normal \ncite % checked
log-Pearson III \dotfill unit gamma \ncite
log-stable \dotfill See stable \eqref{Stable} \ncite
log-Weibull \dotfill Gumbel \ncite % checked
logarithmic-normal \dotfill log-normal \ncite % checked
logarithmico-normal \dotfill log-normal \ncite % checked
logistic \dotfill \eqref{Logistic} \ncite % checked
logit \dotfill logistic \ncite % checked
Lomax \dotfill \eqref{Lomax} \ncite % checked
Lorentz \dotfill Cauchy \ncite % checked
Lorentzian \dotfill Cauchy \ncite % checked
%
m \dotfill Nakagami \mcite{Nakagami1960} % checked
m-Erlang \dotfill Erlang \ncite % checked
Majumder-Chakravart \dotfill generalized beta prime \mcite{McDonald1995} %Majumder1990 % checked
March \dotfill inverse gamma \ncite % checked
max stable \dotfill See Fisher-Tippett \eqref{FisherTippett} \ncite
Maxwell \dotfill \eqref{Maxwell} \ncite % checked
Maxwell-Boltzmann \dotfill Maxwell \ncite % checked
Maxwell speed \dotfill Maxwell \ncite % checked
Meridian \dotfill Meridian \ncite
Mielke \dotfill Dagum \ncite % checked
min stable \dotfill See Fisher-Tippett \eqref{FisherTippett} \ncite
minimax \dotfill Kumaraswamy \mcite{Leemis2008} % checked
modified Lorentzian \dotfill relativistic Breit-Wigner \mcite{Hall1977} % checked
modified pert \dotfill See pert \eqref{Pert} \ncite % checked
Moyal \dotfill \eqref{Moyal} \ncite
%
Nadarajah-Kotz \dotfill \eqref{NadarajahKotz} \mcite{\self} % checked
Nakagami \dotfill \eqref{Nakagami} \ncite % checked
Nakagami-m \dotfill Nakagami \ncite % checked
negative exponential \dotfill exponential \ncite % checked
noncentral chi \dotfill \eqref{NoncentralChi} \ncite
noncentral chi-square \dotfill \eqref{NoncentralChiSqr} \ncite
noncentral F \dotfill \eqref{NoncentralF} \ncite % checked
normal \dotfill \eqref{Normal} \ncite % checked
normal ratio \dotfill Cauchy \ncite % checked
Nukiyama-Tanasawa \dotfill Stacy \mcite{Nukiyama1939} % checked
%
one-sided normal \dotfill half normal \ncite % checked
%%
parabolic \dotfill Epanechnikov \ncite
paralogistic \dotfill \eqref{Paralogistic} \ncite % checked
Pareto \dotfill \eqref{Pareto} \ncite % checked
Pareto type I \dotfill Pareto \ncite % checked
Pareto type II \dotfill Lomax \ncite % checked
Pareto type III \dotfill log-logistic \ncite % checked
Pareto type IV \dotfill Burr \ncite % checked
Pearson \dotfill \eqref{Pearson} \ncite % checked
Pearson type I \dotfill beta \ncite % checked
Pearson type II \dotfill central beta \ncite % checked
Pearson type III \dotfill gamma \ncite % checked
Pearson type IV \dotfill \eqref{PearsonIV} \ncite % checked
Pearson type V \dotfill inverse gamma \ncite % checked
Pearson type VI \dotfill beta prime \ncite % checked
Pearson type VII \dotfill \eqref{PearsonVII} \ncite % checked
Pearson type VIII \dotfill See power function \eqref{PowerFn} \ncite % checked
Pearson type IX \dotfill See power function \eqref{PowerFn} \ncite % checked
Pearson type X \dotfill exponential \ncite % checked
Pearson type XI \dotfill Pareto \mcite{Pearson1916}
Pearson type XII \dotfill \eqref{PearsonXII} \ncite % checked
Pearson exponential \dotfill \eqref{PearsonExp} \mcite{\self}
Perks \dotfill \eqref{Perks} \ncite % checked
pert \dotfill \eqref{Pert} \ncite % checked
Poisson's first law of error \dotfill standard Laplace \ncite % checked
Porter-Thomas \dotfill \eqref{PorterThomas} \ncite
positive definite normal \dotfill half normal \ncite % checked
power \dotfill power function \ncite % checked
power function \dotfill \eqref{PowerFn} \ncite % checked
power prime \dotfill log-logistic \mcite{\self}
Prentice \dotfill beta-logistic \mcite{Morton2000}
pseudo-Voigt \dotfill \eqref{PseudoVoigt} \ncite
pseudo-Weibull \dotfill \eqref{PseudoWeibull} \ncite % checked
%
$q$-exponential \dotfill \eqref{QExp} \ncite % checked
$q$-Gaussian \dotfill \eqref{QGaussian} \ncite % checked
quartic \dotfill biweight \ncite
%
Rayleigh \dotfill \eqref{Rayleigh} \ncite % checked
Rayleigh-Rice \dotfill Rice \ncite
reciprocal inverse Gaussian \dotfill \eqref{RecInvGaussian} \ncite
rectangular \dotfill uniform \ncite % checked
relativistic Breit-Wigner \dotfill \eqref{RelBreitWigner} \ncite % checked
reversed Burr type II \dotfill \eqref{RevBurrII} \ncite % checked
reversed Weibull \dotfill See Weibull \eqref{Weibull} \ncite % checked
Rice \dotfill \eqref{Rice} \ncite
Rician \dotfill Rice \ncite
right triangular \dotfill ascending wedge \ncite % checked
Rosin-Rammler \dotfill Weibull \mcite{Rosin1933} % checked
Rosin-Rammler-Weibull \dotfill Weibull \ncite % checked
%
Sato-Tate \dotfill semicircle \ncite % checked
scaled chi \dotfill \eqref{ScaledChi} \ncite % checked
scaled chi-square \dotfill \eqref{ScaledChiSqr} \ncite % checked
scaled inverse chi \dotfill \eqref{ScaledInvChi} \ncite % checked
scaled inverse chi-square \dotfill \eqref{ScaledInvChiSqr} \mcite{Gelman2004} % checked
sech-square \dotfill logistic \ncite % checked
semicircle \dotfill \eqref{Semicircle} \ncite % checked
semi-normal \dotfill half normal \ncite % checked
Sichel \dotfill \eqref{Sichel} \ncite
Singh-Maddala \dotfill Burr \ncite % checked
singly noncentral F \dotfill See noncentral F \eqref{NoncentralF} \ncite
skew-$t$ \dotfill Pearson type IV \ncite % checked
skew logistic \dotfill Burr type II \ncite % checked % Wikipedia
Slash \dotfill \eqref{Slash} \ncite
Snedecor's F \dotfill F \ncite % checked
spherical normal \dotfill Maxwell \ncite % checked
stable \dotfill \eqref{Stable} \ncite
stable Paretian \dotfill See stable \eqref{Stable} \ncite
Stacy \dotfill \eqref{Stacy} \ncite % checked
Stacy-Mihram \dotfill Amoroso \ncite % checked
standard Amoroso \dotfill standard gamma \ncite % checked
standard beta \dotfill \eqref{StdBeta} \ncite % checked
standard beta exponential \dotfill See beta-exponential \eqref{BetaExp} \ncite % checked
standard beta logistic \dotfill See beta-logistic \eqref{BetaLogistic} \ncite % checked
standard beta prime \dotfill \eqref{StdBetaPrime} \ncite % checked
standard Cauchy \dotfill \eqref{StdCauchy} \ncite % checked
standard exponential \dotfill See exponential \eqref{Exp} \ncite % checked
standard gamma \dotfill \eqref{StdGamma} \ncite % checked
standard Gumbel \dotfill \eqref{StdGumbel} \ncite % checked
standard gamma exponential \dotfill \eqref{StdGammaExp} \ncite % checked
standard Laplace \dotfill See Laplace \eqref{Laplace} \ncite % checked
standard log-normal \dotfill See log-normal \eqref{LogNormal} \ncite % checked
standard normal \dotfill See normal \eqref{Normal} \ncite % checked
standard uniform \dotfill \eqref{StdUniform} \ncite % checked
standardized normal \dotfill standard normal \ncite % checked
standardized uniform \dotfill See uniform \eqref{Uniform} \ncite % checked
stretched exponential \dotfill Weibull \mcite{Laherrere1998}
Student \dotfill Student's-$t$ \ncite % checked
Student-Fisher \dotfill Student's-$t$ \mcite{Rider1957} % checked
Student's $t$ \dotfill \eqref{StudentsT} \ncite % checked
Student's $t_2$ \dotfill \eqref{StudentsT2} \ncite % checked
Student's $t_3$ \dotfill \eqref{StudentsT3} \ncite
Student's $z$ \dotfill \eqref{StudentsZ} \ncite % checked
Subbotin \dotfill exponential power \ncite
Suzuki \dotfill \eqref{Suzuki} \ncite
symmetric beta \dotfill central-beta \ncite
symmetric beta-logistic \dotfill central-logistic \mcite{\self}
symmetric Pearson \dotfill $q$-Gaussian \mcite{\self} %checked
%
$t$ \dotfill Student's-$t$ \ncite % checked
$t_2$ \dotfill Student's-$t_2$ \ncite % checked
$t_3$ \dotfill Student's-$t_3$ \ncite
tine \dotfill triangular \ncite
transformed beta \dotfill \eqref{TransformedBeta} \ncite % checked
transformed gamma \dotfill Stacy \ncite % \mcite{Venter1984} % checked
triangular \dotfill \eqref{Triangular} \ncite
triweight \dotfill \eqref{Triweight} \ncite
truncated normal \dotfill See pp.~\pageref{TruncatedNormal} \ncite
two-tailed exponential \dotfill Laplace \ncite % \mcite{Feller1966} % checked
%
uniform \dotfill \eqref{Uniform} \ncite % checked
uniform difference \dotfill \eqref{UniformDiff} \ncite
uniform prime \dotfill \eqref{UniPrime} \mcite{\self} % checked
uniform product \dotfill \eqref{UniformProduct} \ncite % checked
uniform sum \dotfill Irwin-Hall \ncite
%
unbounded uniform \dotfill See uniform \eqref{Uniform} \ncite % checked
unit gamma \dotfill \eqref{UnitGamma} \ncite % checked
unit normal \dotfill standard normal \ncite % checked
%
van der Waals profile \dotfill L\'{e}vy \ncite % checked
variance ratio \dotfill beta prime \ncite % checked
Verhulst \dotfill exponentiated exponential \mcite{Marshall2007}
Vienna \dotfill Wien \ncite % checked
Vinci \dotfill inverse gamma \ncite % checked
Voigt \dotfill \eqref{Voigt} \ncite
Voigtian \dotfill Voigt \ncite
Voigt profile \dotfill Voigt \ncite
von Mises extreme value \dotfill Fisher-Tippett \ncite % checked
von Mises-Jenkinson \dotfill Fisher-Tippett \ncite % checked
%
waiting time \dotfill exponential \ncite % checked
Wald \dotfill See inverse Gaussian \eqref{InvGaussian} \ncite % checked
wedge \dotfill \eqref{Wedge} \ncite % checked
Weibull \dotfill \eqref{Weibull} \ncite % checked
Weibull-exponential \dotfill log-logistic \ncite % checked
Weibull-gamma \dotfill Burr \ncite % checked
Weibull-Gnedenko \dotfill Weibull \ncite % checked
Wien \dotfill See gamma \eqref{Gamma} \ncite % checked
Wigner semicircle \dotfill semicircle \ncite % checked
Wilson-Hilferty \dotfill \eqref{WilsonHilferty} \ncite % checked
Witch of Agnesi \dotfill Cauchy \mcite{Stigler1974} % checked
%
$z$ \dotfill standard normal \ncite % checked
\clearpage