-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathChGUD.tex
528 lines (445 loc) · 20.9 KB
/
ChGUD.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
% !TEX encoding = UTF-8 Unicode
% !TEX root = FieldGuide.tex
\Sec{Grand Unified Distribution}
\label{sec:GUD}
The Grand Unified Distribution of order $n$ is required to satisfy the following differential equation.
\begin{align}
\label{GUD}
\frac{d}{dx} \ln \opr{GUD}^{(n)}&(x\given a, s \sep a_0, a_1,\ldots,a_n\sep b_0,b_1,\ldots, b_n\sep \beta)
\checked \\
&= -\Left|\tfrac{\beta}{s}\Right| \frac{1}{\bigl(\tfrac{x-a}{s}\bigr)} \frac{a_0 +a_1 \bigl(\tfrac{x-a}{s}\bigr)^{\beta}+\cdots +a_n \bigl(\tfrac{x-a}{s}\bigr)^{n\beta}}{b_0+ b_1 \bigl(\tfrac{x-a}{s}\bigr)^{\beta}+\cdots+b_n\bigl(\tfrac{x-a}{s}\bigr)^{n\beta} }
\notag
\checked
\\
& \qquad a,\ s,\ a_0,a_1,\ldots,a_n,\ b_0,b_1, \ldots, b_n,\ \beta,\ x\ \text{ in } \mathbb{R}
\checked
\notag
\\ \notag
& \qquad \beta = 1 \text{ when } a_0 =0
\checked
\end{align}
In principal, any analytic probability distribution can satisfy this relation.
The central hypothesis of this compendium is that most interesting univariate continuous probability distributions satisfy this relation with low order polynomials in the denominator and numeration. If fact, there seems be little need to consider beyond $n=2$, which we take as the default order, in the absence of further qualification.
\SSec{Special cases}
\dist{Extended Pearson} distribution~\cite{Roy1971}: With $\beta=1$ we obtain an extended Pearson distribution.
\begin{align}
\label{ExtPearson}
&\frac{d}{dx} \ln \opr{ExtPearson}(x\given 0, 1\sep a_0, a_1, a_2\sep b_0, b_1, b_2) \checked \\
\notag
&= - \frac{1}{x} \frac{a_0 +a_1 x+ a_2 x^2}{b_0+ b_1 x+ b_2 x^2 } \\
\notag
& a,\ s,\ a_0,\ a_1,\ a_2,\ b_0,\ b_1,\ b_2 \text{ in } \Real
\end{align}
\begin{figure*}
\thispagestyle{chapter}
\caption[Grand Unified Distributions]{Grand Unified Distributions}
\begin{center}
\scalebox{0.6} {
\begin{tikzpicture}
%\draw[help lines, very thin, step=1] (-2,0) grid (17,17);
%
%\draw (7.5,16.75) node (ExtPearson) {\hyperref[ExtPearson]{Ext. Pearson}};
%%\draw (7.5,15) node (PearsonExp) {\hyperref[PearsonExp]{Pearson Exp.}};
%\draw (7.5,16.75) node (ExtPearson) {\hyperref[ExtPearson]{Ext. Pearson}};
\draw (7.5,17.5) node (gud) {\hyperref[GUD]{GUD}};
%
\draw (5,15) node (genbeta) {\hyperref[sec:GenBeta]{Gen. Beta}};
%\draw (7.5,15) node (pearson) {\hyperref[sec:Pearson]{Pearson}};
\draw (10,15) node (genbetaprime) {\hyperref[sec:GenBetaPrime]{Gen. Beta Prime}};
%
\draw (2.5,12.5) node (beta) {\hyperref[sec:Beta]{Beta}};
\draw (5,12.5) node (betaexp) {\hyperref[sec:BetaExp]{Beta Exp.}};
\draw (7.5,12.5) node (betaprime) {\hyperref[sec:BetaPrime]{Beta Prime}};
\draw (10,12.5) node (betalogistic) {\hyperref[sec:BetaLogistic]{Beta-Logistic}};
%\draw (12.5,12.5) node (pearsoniv) {\hyperref[sec:PearsonIV]{Pearson IV}};
%
%\draw (2.5,10) node (unitgamma) {\hyperref[sec:UnitGamma]{Unit Gamma}};
%\draw (7.5,10) node (amoroso) {\hyperref[sec:Amoroso]{Amoroso}};
%\draw (12.5,10) node (burr) {\hyperref[Burr]{Burr}};
%
\draw [dashed] (gud) -- (genbeta);
%\draw [dashed] (gud) -- (pearson);
\draw [dashed] (gud) -- (genbetaprime);
%%\draw [dashed] (gud) -- (PearsonExp);
%%\draw [dashed] (PearsonExp) -- (betaexp);
%%\draw [dashed] (PearsonExp) -- (betalogistic);
%
\draw [dashed] (genbeta) -- (beta);
\draw [dashed] (genbeta) -- (betaexp);
\draw [dashed] (genbeta) -- (betaprime);
%\draw [dashed] (genbeta) -- (unitgamma);
%\draw [dashed] (genbeta) -- (amoroso);
%
%\draw [dashed] (pearson) -- (beta);
%\draw [dashed] (pearson) -- (betaprime);
%\draw [dashed] (pearson) -- (pearsoniv);
%
\draw [dashed] (genbetaprime) -- (betalogistic);
\draw [dashed] (genbetaprime) -- (betaprime);
%\draw [dashed] (genbetaprime) -- (amoroso);
%\draw [dashed] (genbetaprime) -- (burr);
%
%\draw[|-|, very thin] (-1.5,0.5) -- node[fill=white, midway] {0} (-1.5,3);
%\draw[|-|, very thin] (-1.5,4.5) -- node[fill=white, midway] {1} (-1.5,8);
%\draw[|-|, very thin] (-1.5,9.5) -- node[fill=white, midway] {2} (-1.5,13);
%\draw[|-|, very thin] (-1.5,14.5) -- node[fill=white, midway] {3} (-1.5,15.5);
%\draw[|-|, very thin] (-1.5,16) -- node[fill=white, midway] {4} (-1.5,17);
%
%
%\draw (-1, 15.75) node[rotate=90] {\small shape parameters};
%
%\draw[white] (-2, 0) rectangle (17,17.5); % Bounding box
\end{tikzpicture}
}
\end{center}
\end{figure*}
\begin{table*}[bp]
\begin{center}
\caption[Grand Unified Distribution -- Special cases]{Special cases of the Grand Unified Distribution}
~\\
{\renewcommand{\arraystretch}{1.25}
\begin{tabular}{llcccccccccc}
\eqref{GUD} & GUD & $a$ & $s$ & $a_0$ & $a_1$ & $a_2$ & $b_0$ & $b_1$ & $b_2$ & $\beta$ \\
\hline
\eqref{ExtPearson} & Ext.\ Pearson &.&.&.&.&.&.&.&.&$1$ \checked\\
\eqref{Pearson} & Pearson &.&.&0&.&.&.&.&.&$1$ \checked\\
\eqref{GenBeta} & gen.\ beta &.&.&.&.&0&0&1&-1&. \checked\\
\eqref{GenBeta} & gen.\ beta prime &.&.&.&.&0&0&1&1&. \checked\\
\eqref{InvGaussian} & inv.\ Gaussian &.&.&.&$\tfrac{3}{2}$&.&0&1&0&1 \checked \\
\eqref{RecInvGaussian} & rec.\ inv.\ Gaussian$\!\!\!\!$ &.&.&.&$\tfrac{3}{2}$&.&0&1&0&-1 \\
\eqref{Halphen} & Halphen &.&.&$-\kappa$&$1$-$\alpha$&$\kappa$&0&1&0&1 \checked \\
\eqref{GenHalphen} & gen.\ Halphen &.&.&$-\kappa$&$1$-$\alpha$&$\kappa$&0&1&0&$\beta$ \\
\eqref{Hyperbola} & Hyperbola &.&.&$-\kappa$&1&$\kappa$&0&1&0&1 \checked \\
\eqref{HalphenB} & Halphen B&.&.&$1$-$\alpha$&$-\kappa$&$2$ &1&0&0 &1 \\
\eqref{InvHalphenB} & inv.\ Halphen B&.&.&-2&$-\kappa$&$\!\!1$-$\alpha$&0&0&1&1 \checked \\
\eqref{Sichel} & Sichel &.&.&$-\lambda$&$1$-$\alpha$&$\kappa$&0&1&0&1 \checked \\
\eqref{GenSichel} & gen.\ Sichel &.&.&$-\lambda$&$1$-$\alpha$&$\kappa$&0&1&0&$\beta$ \\
\end{tabular}
}
\end{center}
\end{table*}
%===========================================================================
\dist{Inverse Gaussian} (Wald, inverse normal) distribution~\cite{Wald1944,Tweedie1945,Folks1978,Chhikara1989,Johnson1994}:
\begin{align}
\label{InvGaussian}
\opr{InvGaussian}(x\given \mu,\lambda) &= \sqrt{\frac{\lambda}{2\pi x^3}} \exp\Left(\frac{-\lambda (x-\mu)^2}{2\mu^2 x}\Right) \checked
\\ \notag
& = \opr{ExtPearson}(x\given 0,1 \sep -\tfrac{\lambda}{2}, \tfrac{3}{2}, \tfrac{\lambda}{2\mu^2} \sep 0, 1,0) \checked
\\ \notag
& = \opr{GUD}(x\given 0,1 \sep -\tfrac{\lambda}{2}, \tfrac{3}{2}, \tfrac{\lambda}{2\mu^2} \sep 0, 1,0 \sep 1) \checked
\end{align}
with support $x>0$, mean $\mu>0$, and shape $\lambda>0$. The name `inverse Gaussian' is misleading, since this is not in any direct sense the inverse of a Gaussian distribution.
The {\bf Wald} distribution is a special case with $\mu=1$.
% D[-Log[sqrt(L /(2 pi x^3)) exp(-{L(x- m)^2} / {2m^2 x})], x]
The inverse Gaussian distribution describes first passage time in one dimensional Brownian diffusion with drift~\cite{Chhikara1989}. The displacement $x$ of a diffusing particle after a time $t$, with diffusion constant $D$ and drift velocity $v$, is $\opr{Normal}(vt, \sqrt{2 D t})$. The `inverse' problem is to ask for the first passage time, the time taken to first reach a particular position $y>0$, which is distributed as $\opr{InvGaussian}(\tfrac{y}{v},\tfrac{y^2}{2D})$. \index{first passage time}\index{diffusion}
In the limit that $\mu$ goes to infinity we recover the L\'evy distribution \eqref{Levy}, the first passage time distribution for Brownian diffusion without drift.
\[
\lim_{\mu\rightarrow\infty} \opr{InvGaussian}(x\given \mu, \lambda) = \Levy(x\given 0,\lambda) \checked
\notag
\]
The sum of independent inverse Gaussian random variables is also inverse Gaussian, provided that $\mu^2/\lambda$ is a constant.
\begin{align*}
\sum_i \opr{InvGaussian}_i &(x\given \mu' w_i, \lambda' w_i^2)
\\
& \sim \opr{InvGaussian}\Bigl(x\given \mu' \sum_i w_i, \lambda' \bigl(\sum_i w_i\bigr)^2 \Bigr) \checked
\end{align*}
Scaling an inverse Gaussian scales both $\mu$ and $\lambda$.
\[
c\ \opr{InvGaussian} (\mu, \lambda) \sim \opr{InvGaussian} (c \mu, c \lambda) \checked
\notag
\]
It follows from the previous two relations the sample mean of an inverse Gaussian is inverse Gaussian.
\[
\frac{1}{N} \sum_{i=1}^N \opr{InvGaussian}_i (\mu, \lambda) \sim \opr{InvGaussian} (\mu, N \lambda) \checked
\notag
\]
\dist{Reciprocal inverse Gaussian} distribution~\cite{Johnson1994}:
\begin{align}
\label{RecInvGaussian}
\opr{RecInvGaussian}(x\given \mu,\lambda) &= \sqrt{\frac{\lambda}{2\pi x}} \exp\Left(\frac{-\lambda (1-\mu x)^2}{2\mu^2 x}\Right) \checked
\\ \notag
& = \opr{ExtPearson}(x\given 0,1 \sep -\tfrac{\lambda}{2\mu^2}, \tfrac{1}{2}, \tfrac{\lambda}{2} \sep 0, 1,0) \checked
\\ \notag
& = \opr{GUD}(x\given 0,1 \sep -\tfrac{\lambda}{2}, \tfrac{3}{2}, \tfrac{\lambda}{2\mu^2} \sep 0, 1,0 \sep -1) \checked
\end{align}
with support $x>0$, mean $\mu>0$, and shape $\lambda>0$. An inverted (in standard sense) inverse Gaussian distribution.
\[
\opr{RecInvGaussian}(\mu,\lambda) \sim \opr{InvGaussian}(\mu,\lambda)^{-1}
\notag
\]
% D[-Log[sqrt(L /(2 pi x)) exp(-{L(1- m x)^2} / {2m^2 x})], x]
\dist{Halphen} (Halphen A) distribution~\cite{Halphen1941}:
\begin{align}
\label{Halphen}
&\opr{Halphen}(x\given a,s, \alpha, \kappa)
\\
&= \frac{1}{2 |s| K_{\alpha} (2\kappa)} \Left(\frac{x-a}{s}\Right)^{\alpha-1}
\exp\Left\{-\kappa \Left(\frac{x-a}{s}\Right) -\kappa \Left(\frac{x-a}{s}\Right)^{-1}\Right\},
\checked
\notag
\\
&= \op{GUD}(x\given a,s \sep -\kappa, 1-\alpha, \kappa\sep 0,1,0 \sep 1)
\notag
\checked
\\& \qquad 0 \leq \tfrac{x-a}{s}
\notag
\end{align}
Developed by \'Etienne Halphen for the frequency analysis of river flows.
Limits to gamma, inverse gamma, and normal.
% D[log(x^{(-1)} e^{-k x -k/x}),x]
% D[log(x^{(a-1)} e^{-k x -k/x}),x]
% Halphen B: D[-log(x^{(a-1)} e^{-x^2 +k x}),x]
% Inv. Halphen B: D[-log(x^{(a-1)} e^{-x^(-2) +k / x}),x]
% Sichel: D[log(x^{(a-1)} e^{-k x -L/x}),x]
\dist{Hyperbola} (harmonic) distribution~\cite{Halphen1941,Perreault1999}:
\begin{align}
\label{Hyperbola}
&\opr{Hyperbola}(x\given a,s,\kappa)
\\
&= \frac{1}{2 |s| K_0(2\kappa)} \Left(\frac{x-a}{s}\Right)^{-1}
\exp \Left\{ -\kappa \Left(\frac{x-a}{s}\Right) -\kappa \Left(\frac{x-a}{s}\Right)^{-1} \Right\},
\checked
\notag
\\
& = \op{Halphen}(x\given a,s, 0, \kappa)
\checked
\notag
\\
& = \op{GUD}(x\given a,s\sep -\kappa, 1 , \kappa\sep 0,1,0\sep 1)
\checked
\notag
\\& \qquad 0 \leq \tfrac{x-a}{s}
\notag
\end{align}
\dist{Halphen B} distribution~\cite{Halphen1941,Perreault1999}:
\begin{align}
\label{HalphenB}
&\opr{HalphenB}(x\given a,s, \alpha, \kappa)
\\
&= \frac{2}{|s| H_{2 \alpha}(\kappa)} \Left(\frac{x-a}{s}\Right)^{\alpha-1}
\exp\Left\{- \Left(\frac{x-a}{s}\Right)^{2} +\kappa \Left(\frac{x-a}{s}\Right)\Right\},
\checked
\notag
\\
& = \op{GUD}(x\given a,s\sep 1-\alpha, -\kappa, 2\sep 1,0,0\sep 1) \checked
\notag
\\& \qquad 0 \leq \tfrac{x-a}{s}
\notag
\end{align}
The normalizing function $H_{2 \alpha}(\kappa)$ was called the exponential factorial function by Halphen~\cite{Halphen1955a, Perreault1999}.
Limits to gamma distribution \eqref{Gamma} as $\kappa \rightarrow \infty$.
\index{exponential factorial function}
% According to Perreault1999, cite Morlat1956a not Halphen1941
\dist{Inverse Halphen B} distribution~\cite{Morlat1956a,Perreault1999}:
\begin{align}
\label{InvHalphenB}
&\opr{InvHalphenB}(x\given a,s, \alpha, \kappa)
\\
&= \frac{2}{|s| H_{2\alpha}(\kappa)} \Left(\frac{x-a}{s}\Right)^{-\alpha+1}
\exp\Left\{- \Left(\frac{x-a}{s}\Right)^{-2} +\kappa \Left(\frac{x-a}{s}\Right)^{-1}\Right\},
\checked
\notag
\\
& = \op{GUD}(x \given a,s\sep -2, -\kappa, 1-\alpha\sep 0,0,1\sep1) \checked
\notag
\\& \qquad 0 \leq \tfrac{x-a}{s}
\notag
\end{align}
Limits to inverse gamma distribution \eqref{InvGamma} as $\kappa \rightarrow \infty$.
\dist{Sichel} (generalized inverse Gaussian) distribution~\cite{Good1953, Sichel1973, Barndorff-Nielsen1977}:
\begin{align}
\label{Sichel}
&\opr{Sichel}(x\given a,s, \alpha, \kappa, \lambda)
\\
&= \frac{(\kappa/\lambda)^{\alpha/2} }{2 |s| K_{\alpha} (2\sqrt{\kappa\lambda})} \Left(\frac{x-a}{s}\Right)^{\alpha-1}
\exp\Left\{-\kappa \Left(\frac{x-a}{s}\Right) -\lambda \Left(\frac{x-a}{s}\Right)^{-1}\Right\},
\notag
\checked
\\
& = \op{GUD}(x \given a,s \sep -\lambda, 1-\alpha , \kappa \sep 0,1,0 \sep 1)
\notag
\\& \qquad 0 \leq \tfrac{x-a}{s} \notag
\end{align}
Special cases include Halphen \eqref{Halphen} $\lambda= \kappa$, and inverse Gaussian \eqref{InvGaussian} $\alpha = -\tfrac{1}{2}$.
\dist{Libby-Novick} distribution~\cite{Libby1982a, McDonald1995, Sarabia2006, Nadarajah2007}
\begin{align}
\label{LibbyNovick}
&\opr{LibbyNovick}(x\given a,s,c,\alpha,\gamma)
\\ \notag
&= \frac{1}{|s| B(\alpha,\gamma)}
\Left(\tfrac{x-a}{s}\Right)^{\alpha-1} \Left(1-\tfrac{x-a}{s}\Right)^{\gamma-1} \Left(1- (1-c) \tfrac{x-a}{s}\Right)^{-\alpha-\gamma}
\checked
\notag
\\ \notag
& = \op{GUD}(x\given a,s\sep \alpha-1, 3-\alpha - c - c\gamma, 2c-2\sep
\\ \notag & \qquad\qquad\qquad 1, c-2, 1-c\sep 1) \checked
\\ \notag
& \qquad \text{for } a,s,c,\alpha,\gamma \text{ in } {R}, \alpha,\gamma >0
\\ \notag
& \qquad 0\leq \tfrac{x-a}{s} \leq1
\end{align}
A generalized three-parameter beta distribution that arises naturally as a beta distribution style ratio of gamma distributions~\cite{Sarabia2006}.
\[
\opr{LibbyNovick}(0, \tfrac{s_1}{s_2}, \alpha, \gamma) \sim \frac{\opr{Gamma}_1(0, s_1,\alpha)} { \opr{Gamma}_1(0, s_1,\alpha) + \opr{Gamma}_2(0, s_2,\gamma) }
\notag
\checked
\]
Limits to both the beta ($u=1$) and beta-prime ($u\rightarrow \infty$ ) distributions.
% D[Log[x^(a-1)(1-x)^(g-1)(1-(1-u)x)^(-a-g)], x]
\dist{Gauss hypergeometric} distribution~\cite{Armero1994,Sarabia2006}
\begin{align}
\label{GaussHypergeometric}
&\opr{GaussHypergeometric}(x\given a,s,u, \alpha, \gamma, \delta)
\\ \notag
& = \frac{1}{|s| \mathcal{N}}
\Left(\frac{x-a}{s}\Right)^{\alpha-1} \Left(1-\frac{x-a}{s}\Right)^{\gamma-1} \Left(1- (1-u) \frac{x-a}{s}\Right)^{-\delta}
\checked
\notag
\\ \notag
& \quad \mathcal{N} = B(\alpha,\gamma)\ {}_2F_1(\alpha,\delta;\alpha+\gamma,1-u) \checked
\\ \notag
& \qquad \text{for } a, s, u,\alpha,\gamma, \delta \text{ in } \mathbb{R}, \alpha,\gamma, \delta >0
\\ \notag &
=\op{GUD}(x\given a, s \sep \alpha-1,2 - \alpha -\gamma + (1-u)(1+ \rho+\alpha), \checked \\
& \qquad\qquad \qquad\notag
u(\alpha+\gamma-\rho-2) \sep 1, -1-c, -u \sep 1)
\\ \notag
& \qquad 0\leq \tfrac{x-a}{s} \leq1
\end{align}
% A natural generalization of the three-beta distribution.
Motivated by the Euler integral formula for the Gauss hypergeometric function~\secref{sec:math}.
\dist{Confluent hypergeometric} distribution~\cite{Gordy1988a,Nadarajah2006a,Nadarajah2007}
\begin{align}
\label{Confluent}
\opr{Confluent}&(x \given \alpha, \gamma, \delta)
\\& =
\notag
\frac{1}{\mathcal{N}}
\Left(\frac{x-a}{s}\Right)^{\alpha-1} \Left(1- \Left(\frac{x-a}{s}\Right)\Right)^{\gamma-1} \exp\Left\{-\kappa \Left(\frac{x-a}{s}\Right)\Right\} \checked
\notag
\\
& \qquad \mathcal{N} = B(\alpha, \gamma)\ {}_1 F_1(\alpha; \alpha+\gamma; -\kappa)
\notag
\\
&= \op{GUD}(x\given 0,1 \sep 1-\alpha, \alpha+\gamma+\kappa -2, -\kappa \sep 1,-1,0 \sep 1) \checked
\notag
\\
& \qquad0 \leq \tfrac{x-a}{s} \leq 1 \notag
\end{align}
This distribution was introduced by Gordy~\cite{Gordy1988a} for applications to auction theory.
% D[Log[ x^(a-1) (1-x)^(g-1) Exp[-k x] ] , x]
% Add location and scale
%\SSec{Special cases: \texorpdfstring{$\beta\neq1$}{beta neq 1}}
\dist{Generalized Halphen}~\cite{\self} :
\begin{align}
\label{GenHalphen}
&\opr{GenHalphen}(x\given a,s, \alpha, \kappa, \beta)
\\
&= \frac{|\beta|}{2 |s| K_{\alpha} (2\kappa)} \Left(\frac{x-a}{s}\Right)^{\beta \alpha-1}
\exp\Left\{-\kappa \Left(\frac{x-a}{s}\Right)^\beta -\kappa \Left(\frac{x-a}{s}\Right)^{-\beta}\Right\} \checked
\notag
\\
& = GUD(x\given a,s\sep -\kappa, 1-\alpha , \kappa\sep 0,1,0\sep\beta) \checked
\notag
\\
& \qquad0 \leq (\tfrac{x-a}{s})^\beta \notag
\end{align}
\dist{Generalized Sichel} (generalized generalized inverse Gaussian) distribution~\cite{Shakil2010a}:
\begin{align}
\label{GenSichel}
&\opr{GenSichel}(x\given a,s, \alpha, \kappa, \lambda, \beta)
\\
&= \frac{|\beta| (\kappa/\lambda)^{\alpha/2} }{2 |s| K_{\alpha} (2\sqrt{\kappa\lambda})} \Left(\frac{x-a}{s}\Right)^{\beta\alpha-1}
\exp\Left\{-\kappa \Left(\frac{x-a}{s}\Right)^\beta -\lambda \Left(\frac{x-a}{s}\Right)^{-\beta}\Right\}, \checked
\notag
\\
& = \op{GUD}(x \given a,s \sep -\lambda, 1-\alpha , \kappa \sep 0,1,0 \sep \beta) \checked
\notag
\\& \qquad 0 \leq (\tfrac{x-a}{s})^\beta \notag
\end{align}
Special cases include the generalized Halphen \eqref{GenHalphen} $\lambda= \kappa$, and Sichel \eqref{Sichel} distributions $\beta = 1$.
\pagebreak[4]
\begin{table*}[tp]
\begin{center}
\caption[Pearson-exponential distributions -- Special cases]{Special cases of the Pearson exponential family}
~\\
\label{PearsonExpTable}
\begin{tabular}{llcccccccccc}
\eqref{PearsonExp} & Pearson Exp. & $\pLoc$ & $\pScale$ & $a_0$ & $a_1$ & $a_2$ & $b_0$ & $b_1$ & $b_2$ \\
%
\hline
\eqref{BetaExp} & beta-exp. &.&.&0&$\alpha$+$\gamma$-$1$&-$\alpha$ &0&1&-1\\ %D[-Log[Exp(- a x) (1 - Exp(-x) )^(g-1) ],x]
\eqref{BetaLogistic} & beta-logistic &.&.&0&-$\gamma$&$\alpha$ &0&1&1 \\ % D[Log[ Exp(- a x) (1 + Exp(-x) )^(-a-g) ],x]
\eqref{CentralLogistic} & central-logistic &.&.&0&-$\alpha$&$\alpha$ &0&1&1 \\
\eqref{Perks} & Perks &.&.&-1&0&1&1&$c$&1 \\
\eqref{Logistic} & logistic &.&.&0&-1&1 &0&1&1 \\
\eqref{HyperbolicSecant} & hyperbolic secant &.&.&0&-\half&\half &0&1&1\\
\eqref{GammaExp} & gamma exp. &.&.&0&-$\alpha$&1&0&1&0 \\
\eqref{Exp} & exponential &.&.&0&1&0&0&1&0
\end{tabular}
\end{center}
\end{table*}
\todo{Table of Person Exponential}
\SSec{Pearson-exponential distributions}
If we take the limit of $\beta$ to infinity (See \secref{sec:Limits:exp}), then we get the family of Pearson exponential distributions.
\dist{Pearson-exponential} distribution~\cite{\self}:
\begin{align}
\opr{PearsonExp}&(x\given \pLoc, \pScale \sep a_0, a_1,a_2 \sep b_0,b_1,b_2)
\label{PearsonExp}
\\ &= \lim_{\beta\rightarrow \infty} \opr{GUD}(x\given \pLoc + \beta \pScale, \beta \pScale\sep a_0, a_1,a_2\sep b_0,b_1,b_2\sep \beta)
\notag
\end{align}
Because we can generally interchange limits and differentiation, such distributions satisfy the following differential equation.
\begin{align}
\frac{d}{dx} \ln \opr{PearsonExp}&(x\given \pLoc, \pScale \sep a_0, a_1,a_2\sep b_0,b_1,b_2)
\notag
\\
&= \left|\tfrac{1}{\lambda}\right| \frac{a_0 +a_1 e^{\tfrac{x-\pLoc}{\pScale}} +a_2 e^{2\tfrac{x-\pLoc}{\pScale}} }
{b_0+ b_1 e^{\tfrac{x-\pLoc}{\pScale}}+b_2 e^{2\tfrac{x-\pLoc}{\pScale} }}
\notag
\end{align}
See table~\ref{PearsonExpTable} and Fig.~\ref{PearsonExpHierarchy}.
\dist{Perks} (Champernowne) distribution~\cite{Perks1932,Champernowne1952,Talacko1956,Devroye1986}:
\begin{align}
\label{Perks}
\opr{Perks}(x\given \pLoc, \pScale, c)
&= \frac{1}{\mathcal{N}} \frac{1}{c + e^{-\tfrac{x-\pLoc}{\pScale}} + e^{+\tfrac{x-\pLoc}{\pScale}}} \checked
\\
& = \op{PearsonExp}(x \given \pLoc, \pScale \sep -1, 0 , -1 \sep 1, c, 1) \checked
\notag
\end{align}
Special cases include logistic ($c=0$) \eqref{Logistic} and
hyperbolic secant ($c=2$) \eqref{HyperbolicSecant} distributions.
\SSec{Greater Grand Unified distributions}
There are only a few interesting specials cases of the Grand Unified Distribution with order greater than 2.
%===========================================================================
\dist{Appell beta} distribution~\cite{Nadarajah2006a}:
\begin{align}
\label{AppellBeta}
&\op{AppellBeta}(x \given a,s, \alpha, \gamma, \rho, \delta) \notag
\\& \qquad= \frac{1}{\mathcal{N}\ |s|}
\frac{ \bigl(\frac{x-a}{s}\bigr)^{\alpha-1} \bigl(1-\frac{x-a}{s}\bigr)^{\gamma-1} }
{ \bigl(1 - u \frac{x-a}{s} \bigr)^{\rho} \bigl(1-v \frac{x-a}{s} \bigr)^{\delta} }
\checked
\\
&\qquad \mathcal{N} = B(\alpha, \gamma)\ F_1(\alpha,\rho,\delta,\alpha+\gamma; u, v)\checked
\notag
\\ \notag
&= \op{GUD}^{(3)}(x\given a,s \sep a_0,a_1,a_2,a_3 \sep b_0,b_1,b_2,b_3 \sep 1)
\\ \notag &
b_0= -1,\ b_1 =1+u+v,\ b_2= -u-v-uv,\ b_3= uv \checked
\notag
\end{align}
Here $F_1$ is the Appell hypergeometric function of the first kind.
% D[Log[ x^(a-1) (1-x)^(g-1) (1- u x)^(-r) (1- v x)^(-d)] , x]
%===========================================================================
\dist{Laha} distribution~\cite{Rider1957,Laha1958,Popescu1999}:
\begin{align}
\label{Laha}
\opr{Laha}(x\given a,s) &= \frac{\sqrt{2}}{|s|\ \pi} \frac{1}{\Left(1 + (\tfrac{x-a}{s})^4 \Right)} \checked
\\ & = \opr{GUD}^{(4)}(x \given a,s \sep 0,-4,0,0,0 \sep 1,0,2,0,1 \sep 1) \checked \notag
\end{align}
A symmetric, continuous, univariate, unimodal probability density, with infinite support.
Originally introduced to disprove the belief that the ratio of two independent and identically distributed random variables is distributed as Cauchy \eqref{Cauchy} if, and only if, the distribution is normal. A 4th order Grand Unified Distribution \secref{sec:GUD},
and a special case of the generalized Pearson VII distribution~\eqref{GenPearsonVII}.
In contradiction to the literature~\cite{Popescu1999}, Laha random variates can be easily generated by noting that the distribution is symmetric, and that the half-Laha distribution \eqref{HalfGenPearsonVII} is a special case of the generalized beta prime distribution, which can itself be generated as the ratio of two gamma distributions~\cite{\self}.