-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpi.py
548 lines (404 loc) · 14.3 KB
/
pi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import math
# FUNCTIONS OF INTEREST:
#
# pi_ (k, x, y)
# BIGPI_ (k, x, y)
# pi_tuple_(k, [args...])
#
# INVERSES:
#
# pi_inv (k, n)
# BIGPI_inv(k, n)
#
# SHORTCUTS:
#
# pi_3 (x, y)
# pi_10(x, y)
# pi_tuple_3([args...])
# pi_tuple_10([args...])
##########################################################
# 1) FUNCTIONS OF INTEREST
##########################################################
def pi_(k, x, y):
if x == 0:
return digits_to_int(k, zeroless(k, y))
d = digits_in_base(k, x)
d += [0]
d += zeroless(k, y)
return digits_to_int(k, d)
def pi_tuple_(k, args):
if not args:
return 0
result = args[0]
for arg in args[1:]:
result = pi_(k, result, arg)
return result
def BIGPI_(k, x, y):
if x == 0:
return digits_to_int(k, zeroless(k, y))
d = zeroless(k, y + 1)
d += [0]
d += nth_digit_string(k, x - 1)
#print(zeroless(k, y), k, y, d, x)
return digits_to_int(k, d)
##########################################################
# 1.1) THE INVERSES
##########################################################
def pi_inv(k, n):
digits = digits_in_base(k, n)
separator = 0
if separator not in digits:
return [0, zeroless_inv(k, digits)]
left, right = split_list_from_right(digits, separator)
x = digits_to_int(k, left)
y = zeroless_inv(k, right)
return [ x, y ]
def BIGPI_inv(k, n):
digits = digits_in_base(k, n)
separator = 0
if n == 0:
return [0, 0]
if separator not in digits:
return [0, zeroless_inv(k, digits)]
left, right = split_list(digits, separator)
x = digit_string_to_n(k, right) + 1
y = zeroless_inv(k, left) - 1
return [ x, y ]
##########################################################
# 2) SHORTCUTS
##########################################################
def pi_3(x, y):
return pi_(3, x, y)
def pi_10(x, y):
return pi_(10, x, y)
def pi_tuple_3(args):
return pi_tuple_(3, args)
def pi_tuple_10(args):
return pi_tuple_(10, args)
##########################################################
# 3) INTERMEDIATE FUNCTIONS (DIGIT STRINGS/ZEROLESS)
##########################################################
# Z_k(n)
def zeroless(k, n):
if k == 2:
return [1] * n
assert(k > 2)
s = nth_digit_string(k - 1, n)
return [digit + 1 for digit in s]
def zeroless_inv(k, digits):
assert(k >= 2)
return digits_to_int(k - 1, digits)
def n_zeroless_nines(k, n):
if k == 2:
return zeroless(k, n)
assert(n >= 1)
i = ((k-1)**(n+1) - 1)/(k - 2) - 1
return zeroless(k, i)
def digits_in_base(b, num):
if b == 1:
return [1] * num
assert(b >= 2)
if num == 0:
return [0]
digits = []
while num > 0:
digits.append(num % b)
num //= b
return digits[::-1]
def digits_to_int(b, digits):
if b == 1:
return len(digits)
assert(b >= 2)
num = 0
power = 1
for d in reversed(digits):
num += d * power
power *= b
return num
# D_k(n)
def nth_digit_string(b, n):
if b == 1:
return [0] * n
assert(b >= 2)
if n == 0:
return []
# To treat [0] as the 1th string
n = n - 1
power = b
length = 1
while n - power >= 0:
n -= power
power *= b
length = length + 1
digits = digits_in_base(b, n)
digits = [0] * (length - len(digits)) + digits
return digits
# D_k^{-1}(n)
def digit_string_to_n(b, digits):
if b == 1:
return len(digits)
n = 0
power = 1
for i in reversed(digits):
n += power + i * power
power *= b
return n
def sets_equal(a, b):
return len(a) == len(b) and all(x in a for x in b)
def split_list(lst, split_element):
index = lst.index(split_element)
return lst[:index], lst[index + 1:]
def split_list_from_right(lst, split_element):
index = len(lst) - 1 - lst[::-1].index(split_element)
return lst[:index], lst[index + 1:]
# The original P_{2}
def Z(k, n):
return digits_to_int(k, zeroless(k, n))
def number_concatenation(k, x, y):
return digits_to_int(k, digits_in_base(k, x) + digits_in_base(k, y))
def pi_chain_numbers_(k, x, y):
return digits_to_int(k, digits_in_base(k, x) + [0] + digits_in_base(k, y))
def pi_limsup_(k, x, y):
e = math.log(k, k - 1)
#c = ((k-2) ** e) / (k-1)
k2 = k * k
return k2 * x * (y ** e)
##########################################################
# 4) OTHER PAIRING FUNCTIONS
##########################################################
def P_2(x, y):
return (2 * x + 1) * 2**y - 1
def R_tuple(args):
if not args:
return 0
result = args[0]
for arg in args[1:]:
result = R(result, arg)
return result
def R(x, y):
# Rosenberg pairing function
return max(x, y) ** 2 + max(x, y) + x - y
##########################################################
# 5) BENCHMARKS/COMPARISONS
##########################################################
def test_limit_superior(k):
print("Testing for pi being above limit supremum...")
for n in range(5, 5+1000000):
k = 10
pr = pi_inv(k, n)
x = pr[0]
y = pr[1]
if x < 2 or y < 2:
# To only look at better estimates.
continue
r = n / pi_limsup_(k, x, y)
if r > 1:
# This would normally happen with y = 1.
print("ABOVE LIMIT SUPREMUM: ", r, x, y, n)
print("Test complete.")
def run_comparisons(base_k):
print ("")
print ("##########################################")
print ("####### COMPARISONS WITH OTHER PFS #######")
print ("##########################################")
k = base_k
x, y = 10, 1000000
print(f"\nFor base {k}.")
print(f"\nRosenberg vs. pi for (x={x}, y={y}):")
print(f" R (x,y) = {R(x, y)}")
print(f" pi(x,y) = {pi_(k, x, y)}")
x, y = 10**35, 10**10
print(f"\nRosenberg vs. pi for (x=10^35, y=10^10):")
print(f" R (x,y) = {R(x, y)}")
print(f" pi(x,y) = {pi_(k, x, y)}")
x, y = 10**35, 10**35
print(f"\nRosenberg vs. pi for (x=10^35, y=10^35):")
print(f" R (x,y) = {R(x, y)}")
print(f" pi(x,y) = {pi_(k, x, y)}")
seq = [10, 20, 30, 40, 50]
print(f"\nR_tuple({seq}): {R_tuple(seq)}")
print(f"pi_tuple_{k}({seq}): {pi_tuple_(k, seq)}")
##########################################################
# 6) ASSERTS - VERIFYING IDENTITIES
##########################################################
def verify_identities():
print ("")
print ("##########################################")
print ("########### VERIFY IDENTITIES ############")
print ("##########################################")
print ("")
verify_set_identities()
verify_zeroless_identities()
verify_number_concatenation_inequalities()
verify_major_functional_equations()
verify_sanity_identities()
print ("All identities are correct.")
def verify_set_identities():
print("Checking set identities...")
for k in range(2, 11):
set_fr = set()
set_iv = set()
equals = []
for n in range(0, k**4):
pr = BIGPI_inv(k, n)
prinv = pi_inv(k, n)
set_fr.add((pr[0], pr[1]))
set_iv.add((prinv[0], prinv[1]))
if sets_equal(set_fr, set_iv) and n > 1:
equals = equals + [n]
the_off_equal = k**2 + k - 2
assert(the_off_equal in equals)
for n in range(1, 4):
repunit = (k**(n+1) - 1) // (k - 1)
assert(repunit - 1 in equals)
assert(repunit in equals)
assert(repunit + k - 2 in equals)
#print(repunit - 2, the_off_equal)
if n > 1:
assert((not (repunit - 2 in equals)) )
assert(not (repunit + k in equals))
print ("Passed set identities.")
def verify_zeroless_identities():
print("Checking zeroless/digit string identities...")
# Some zeroless inv and smaller base identity
for i in range(2, 1000):
for k in range(2, 20):
some_zr = zeroless(k+1, i)
assert(i == digits_to_int(k, some_zr))
assert(i == zeroless_inv(k+1, digits_in_base(k, i)))
# Honestly dont know why this holds
assert(i == digits_to_int(k, zeroless(k+1, i)))
# Example from OEIS
assert(digits_to_int(10, zeroless(10, 8773)) == 12927)
assert(digits_to_int(10, zeroless(10, 1000)) == 1331)
# ZEROLESS/DIGIT IDENTITIES
assert(n_zeroless_nines(10, 1) == [9])
assert(n_zeroless_nines(10, 2) == [9,9])
for k in range(2, 11):
for n in range(1, 10):
assert(n_zeroless_nines(k, n) == [k-1] * n)
assert(digits_to_int(k, n_zeroless_nines(k, n)) == k ** n - 1)
assert(digits_to_int(10, zeroless(10, (9**(n+1) - 1)/8 - 1)) == 10**n - 1)
for n in range(1, 100):
# Zk and Dk identity
assert(digits_to_int(k, zeroless(k, n)) == digit_string_to_n(k, nth_digit_string(k-1, n)))
# Inverse
digs = digits_in_base(k, n)
if not (0 in digs):
assert(zeroless_inv(k, digs) == digit_string_to_n(k-1, nth_digit_string(k, n)))
# NTH DIGIT STRING
assert(nth_digit_string(k, n+1) + [0] == nth_digit_string(k, k*n+k+1))
assert(nth_digit_string(k, n) + [0] == nth_digit_string(k, k*n+1))
assert(zeroless(k, n) + [1] == zeroless(k, (k-1)*n+1))
# Therefore
assert(digits_to_int(10, zeroless(k, n)) * 10 == digits_to_int(10, zeroless(k, (k-1)*n+1)) - 1)
def verify_number_concatenation_inequalities():
print("Checking number concatenation inequalities...")
for k in range(10, 11):
for x in range(1, 100):
for y in range(1, 100):
ch = number_concatenation(k, x, y)
assert(ch <= k*x*y + y)
assert(ch >= x*y + y)
ch = pi_chain_numbers_(k, x, y)
# Tighter bounds
assert(ch <= k*k*x*y + y)
assert(ch >= k*x*y + y)
# Multiplicative bounds
assert(ch <= (k*k+1)*x*y)
assert(ch >= k*x*y)
def verify_sanity_identities():
print("Checking sanity generalization identity...")
for x in range(0, 20):
for y in range(0, 20):
assert(pi_(2, x, y) == P_2(x, y))
print("Checking sanity inverses identity...")
for k in range(2, 11):
for n in range(1, 100):
assert(pi_(k, 0, n) == BIGPI_(k, 0, n))
# ZEROLESS
assert(zeroless_inv(k, zeroless(k, n)) == n)
# SMALLPI
assert(n == pi_(k, pi_inv(k, n)[0], pi_inv(k, n)[1]))
# BIGPI
assert(n == BIGPI_(k, BIGPI_inv(k, n)[0], BIGPI_inv(k, n)[1]))
def verify_major_functional_equations():
print("Checking major functional equations...")
# ORIGINAL P_2 FORM
for x in range(0, 20):
for y in range(0, 20):
p = lambda i, j : P_2(i, j)
z = lambda n : Z(2, n)
# Original properties
# Closed form
assert(p(x, y) == (z(y) + 1) * (2 * x + 1) - 1)
# Increments
assert(p(x + 1, y) == p(x, y) + 2*(z(y) + 1))
assert(p(x, y + 1) == 2 * p(x, y) + 1)
for c in range(0, 20):
# Homogeneity
assert(p(x, y) * c == p(c*x, y) + (c-1) * z(y))
# Additivity in x
assert(p(x + c, y) == p(x, y) + p(c, y) - z(y))
# Additivity in y
assert(p(x, y + c) == (z(c) + 1) * (p(x, y) + 1) - 1)
# GENERAL FORM
for k in range(2, 11):
for x in range(0, 20):
for y in range(0, 20):
p = lambda i, j : pi_(k, i, j)
z = lambda n : Z(k, n)
# GENERAL INCREMENT
assert(p(x, y) * k == p(x, y*(k-1) + 1) - 1)
# GENERAL CLOSED FORM (ALL NINES)
if k > 2:
frac = ((k-1) ** (y + 1) - 1) // (k - 2)
assert(k**y * (k*x + 1) - 1 == p(x, frac - 1))
else:
assert(k**y * (k*x + 1) - 1 == p(x, y))
# GENERAL CLOSED FORM (ALL ONES)
if k > 2:
frac = ((k-1) ** y - 1) // (k - 2)
assert(k**y * (k*x + 1) + ((k ** y) - 1)//(k-1) - k**y == p(x, frac))
else:
assert(k**y * (k*x + 1) + ((k ** y) - 1)//(k-1) - k**y == p(x, y))
assert(k**y * (k*x + 1) - 1 == p(x, y))
for j in range(1, k):
assert(p(x, (k-1)*y + j) - j == p(x, y) * k )
for c in range(0, 20):
# HOMOGENEITY/PRODUCT FORMULA
assert(p(x, y) * c == p(c*x, y) + (c-1) * z(y))
assert(p(c*x, y) == p(x, y) * c - (c-1) * z(y))
# ADDITIVITY IN X
assert(p(x + c, y) == p(x, y) + p(c, y) - z(y))
##########################################################
# 7) MAIN
##########################################################
def print_readme_claims():
print ("")
print ("##########################################")
print ("########### README CLAIMS ############")
print ("##########################################")
print ("")
print("R(10, 1000000) =", R(10, 1000000))
print("pi_10(10, 1000000) =", pi_10(10, 1000000))
print("R(10**35, 10**10) =", R(10**35, 10**10))
print("pi_10(10**35, 10**10) =", pi_10(10**35, 10**10))
print("R(10**35, 10**35) =", R(10**35, 10**35))
print("pi_10(10**35, 10**35) =", pi_10(10**35, 10**35))
print("R_tuple([10, 20, 30, 40, 50]) =", R_tuple([10, 20, 30, 40, 50]))
print("pi_tuple_10([10, 20, 30, 40, 50]) =", pi_tuple_10([10, 20, 30, 40, 50]))
print("pi_tuple_3([10, 20, 30, 40, 50]) =", pi_tuple_3([10, 20, 30, 40, 50]))
print("pi_(2, 39050, 1000) =", pi_(2, 39050, 1000))
print("pi_(3, 39050, 1000) =", pi_(3, 39050, 1000))
print("pi_(4, 39050, 1000) =", pi_(4, 39050, 1000))
print("pi_(5, 39050, 1000) =", pi_(5, 39050, 1000))
print("pi_(10, 39050, 1000) =", pi_(10, 39050, 1000))
def main():
print_readme_claims()
run_comparisons(10)
run_comparisons(3)
verify_identities()
test_limit_superior(10)
if __name__ == "__main__":
main()