-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmm_datautils.py
1736 lines (1517 loc) · 65.7 KB
/
mm_datautils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# pyre-strict
import copy
import json
import os
import random
from dataclasses import dataclass
from typing import Dict, List, Sequence
import numpy as np
import tokenizers
import torch
import transformers
from longvu import conversation as conversation_lib
from longvu.constants import (
DEFAULT_IM_END_TOKEN,
DEFAULT_IM_START_TOKEN,
DEFAULT_IMAGE_TOKEN,
IGNORE_INDEX,
IMAGE_TOKEN_INDEX,
)
# pyre-fixme[21]: Could not find module `decord`.
from decord import cpu, VideoReader # @manual=fbsource//third-party/pypi/decord:decord
from packaging import version
from PIL import Image
from torch import distributed as dist
from torch.distributed.fsdp import (
FullStateDictConfig,
FullyShardedDataParallel as FSDP,
StateDictType,
)
from torch.utils.data import Dataset
# pyre-fixme
IS_TOKENIZER_GREATER_THAN_0_14 = version.parse(tokenizers.__version__) >= version.parse(
"0.14"
)
from transformers import StoppingCriteria
from longvu.mm_utils import KeywordsStoppingCriteria
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def maybe_zero_3(param, ignore_status: bool = False, name=None):
# NO deepspeed
# from deepspeed import zero
# from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
# if hasattr(param, "ds_id"):
# if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
# if not ignore_status:
# print(name, 'no ignore status')
# with zero.GatheredParameters([param]):
# param = param.data.detach().cpu().clone()
# else:
# param = param.detach().cpu().clone()
return param.detach().cpu().clone()
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
to_return = {
k: t
for k, t in named_params
if any(key_match in k for key_match in keys_to_match)
}
to_return = {
k: maybe_zero_3(v, ignore_status=True, name=k).cpu()
for k, v in to_return.items()
}
return to_return
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def find_all_linear_names(model):
cls = torch.nn.Linear
lora_module_names = set()
multimodal_keywords = ["mm_projector", "vision_tower", "vision_resampler"]
for name, module in model.named_modules():
if any(mm_keyword in name for mm_keyword in multimodal_keywords):
continue
if isinstance(module, cls):
names = name.split(".")
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if "lm_head" in lora_module_names: # needed for 16-bit
lora_module_names.remove("lm_head")
return list(lora_module_names)
def safe_save_model_for_hf_trainer(
trainer: transformers.Trainer, output_dir: str
) -> None:
"""Collects the state dict and dump to disk."""
global_rank = dist.get_rank()
save_policy = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
# pyre-fixme[16]: `Trainer` has no attribute `args`.
if len(trainer.args.fsdp) == 0:
# pyre-fixme[16]: `Trainer` has no attribute `model`.
cpu_state_dict = trainer.model.state_dict()
else:
with FSDP.state_dict_type(
trainer.model, StateDictType.FULL_STATE_DICT, save_policy
):
cpu_state_dict = trainer.model.state_dict()
for key in cpu_state_dict.keys():
cpu_state_dict[key] = cpu_state_dict[key].to(torch.bfloat16)
if global_rank == 0:
trainer.model.config.save_pretrained(output_dir)
current_folder = output_dir.split("/")[-1]
parent_folder = os.path.dirname(output_dir)
save_path = os.path.join(output_dir, "pytorch_model.bin")
if getattr(trainer.args, "tune_mm_mlp_adapter", False) and not getattr(
trainer.args, "tune_text_decoder", False
):
# Only save Adapter
keys_to_match = ["mm_projector"]
if getattr(trainer.args, "use_im_start_end", False):
keys_to_match.extend(["embed_tokens", "embed_in"])
freeze_layer_remove = []
for key in cpu_state_dict.keys():
remove = True
for key_match in keys_to_match:
if key_match in key:
remove = False
break
if remove:
freeze_layer_remove.append(key)
for key in freeze_layer_remove:
del cpu_state_dict[key]
if current_folder.startswith("checkpoint-"):
mm_projector_folder = os.path.join(parent_folder, "mm_projector")
os.makedirs(mm_projector_folder, exist_ok=True)
save_path = os.path.join(mm_projector_folder, f"{current_folder}.bin")
else:
save_path = os.path.join(output_dir, f"mm_projector.bin")
torch.save(cpu_state_dict, save_path)
def videollava_get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
to_return = {k: t for k, t in named_params if any(
key_match in k for key_match in keys_to_match)}
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu()
for k, v in to_return.items()}
return to_return
def videollava_safe_save_model_for_hf_trainer(trainer: transformers.Trainer,
output_dir: str):
"""Collects the state dict and dump to disk."""
if getattr(trainer.args, "tune_mm_mlp_adapter", False):
# Only save Adapter
keys_to_match = ['mm_projector']
if getattr(trainer.args, "use_im_start_end", False):
keys_to_match.extend(['embed_tokens', 'embed_in'])
weight_to_save = videollava_get_mm_adapter_state_maybe_zero_3(
trainer.model.named_parameters(), keys_to_match)
trainer.model.config.save_pretrained(output_dir)
current_folder = output_dir.split('/')[-1]
parent_folder = os.path.dirname(output_dir)
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1:
if current_folder.startswith('checkpoint-'):
mm_projector_folder = os.path.join(
parent_folder, "mm_projector")
os.makedirs(mm_projector_folder, exist_ok=True)
torch.save(weight_to_save, os.path.join(
mm_projector_folder, f'{current_folder}.bin'))
else:
torch.save(weight_to_save, os.path.join(
output_dir, f'mm_projector.bin'))
return
if trainer.deepspeed:
torch.cuda.synchronize()
trainer.save_model(output_dir)
return
state_dict = trainer.model.state_dict()
if trainer.args.should_save:
cpu_state_dict = {
key: value.cpu()
for key, value in state_dict.items()
}
del state_dict
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
def smart_tokenizer_and_embedding_resize(
# pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use
# `typing.Dict[<key type>, <value type>]` to avoid runtime subscripting errors.
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
) -> None:
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
# pyre-fixme[16]: `PreTrainedModel` has no attribute `resize_token_embeddings`.
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
# pyre-fixme[16]: `PreTrainedModel` has no attribute `get_input_embeddings`.
input_embeddings = model.get_input_embeddings().weight.data
# pyre-fixme[16]: `PreTrainedModel` has no attribute `get_output_embeddings`.
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True
)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True
)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
def _tokenize_fn(
strings: Sequence[str],
tokenizer: transformers.PreTrainedTokenizer,
# pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use
# `typing.Dict[<key type>, <value type>]` to avoid runtime subscripting errors.
) -> Dict:
"""Tokenize a list of strings."""
tokenized_list = [
tokenizer(
text,
return_tensors="pt",
padding="longest",
max_length=tokenizer.model_max_length,
truncation=True,
)
for text in strings
]
input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list]
input_ids_lens = labels_lens = [
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
for tokenized in tokenized_list
]
return dict(
input_ids=input_ids,
labels=labels,
input_ids_lens=input_ids_lens,
labels_lens=labels_lens,
)
# pyre-fixme[2]: Parameter must be annotated.
def _mask_targets(target, tokenized_lens, speakers) -> None:
# cur_idx = 0
cur_idx = tokenized_lens[0]
tokenized_lens = tokenized_lens[1:]
target[:cur_idx] = IGNORE_INDEX
for tokenized_len, speaker in zip(tokenized_lens, speakers):
if speaker == "human":
target[cur_idx + 2 : cur_idx + tokenized_len] = IGNORE_INDEX
cur_idx += tokenized_len
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def _add_speaker_and_signal(header, source, get_conversation: bool = True):
"""Add speaker and start/end signal on each round."""
BEGIN_SIGNAL = "### "
END_SIGNAL = "\n"
conversation = header
for sentence in source:
from_str = sentence["from"]
if from_str.lower() == "human":
from_str = conversation_lib.default_conversation.roles[0]
elif from_str.lower() == "gpt":
from_str = conversation_lib.default_conversation.roles[1]
else:
from_str = "unknown"
sentence["value"] = (
BEGIN_SIGNAL + from_str + ": " + sentence["value"] + END_SIGNAL
)
if get_conversation:
conversation += sentence["value"]
conversation += BEGIN_SIGNAL
return conversation
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def process_images(images, image_processor, model_cfg):
if isinstance(image_processor, list):
processor_aux_list = image_processor
new_images_aux_list = []
for image in images:
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
image_aux_list = []
for processor_aux in processor_aux_list:
image_aux = image
if hasattr(processor_aux, "image_mean"):
try:
target_resolution = processor_aux.crop_size["height"]
except:
target_resolution = processor_aux.size["height"]
image_aux = expand2square(
image_aux, tuple(int(x * 255) for x in processor_aux.image_mean)
).resize((target_resolution, target_resolution))
image_aux = processor_aux.preprocess(image_aux, return_tensors="pt")[
"pixel_values"
][0]
image_aux_list.append(image_aux)
new_images_aux_list.append(image_aux_list)
new_images_aux_list = [
list(batch_image_aux) for batch_image_aux in zip(*new_images_aux_list)
]
new_images_aux_list = [
torch.stack(image_aux).half().cuda() for image_aux in new_images_aux_list
]
return new_images_aux_list
else:
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
new_images = []
if image_aspect_ratio == "pad":
for image in images:
image = expand2square(
image, tuple(int(x * 255) for x in image_processor.image_mean)
)
image = image_processor.preprocess(image, return_tensors="pt")[
"pixel_values"
][0]
new_images.append(image)
else:
return image_processor(images, return_tensors="pt")["pixel_values"]
if all(x.shape == new_images[0].shape for x in new_images):
new_images = torch.stack(new_images, dim=0)
return new_images
# pyre-fixme[2]: Parameter must be annotated.
# pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use
# `typing.Dict[<key type>, <value type>]` to avoid runtime subscripting errors.
def preprocess_multimodal(sources: Sequence[str], data_args) -> Dict:
is_multimodal = data_args.is_multimodal
if not is_multimodal:
# pyre-fixme[7]: Expected `Dict[typing.Any, typing.Any]` but got
# `Sequence[str]`.
return sources
for source in sources:
for sentence in source:
if (
# pyre-fixme[6]: For 1st argument expected `Union[slice, SupportsIndex]`
# but got `str`.
DEFAULT_IMAGE_TOKEN in sentence["value"]
# pyre-fixme[6]: For 1st argument expected `Union[slice, SupportsIndex]`
# but got `str`.
or "<video>" in sentence["value"]
):
# pyre-fixme[16]: `str` has no attribute `__setitem__`.
sentence["value"] = (
# pyre-fixme[6]: For 1st argument expected `Union[slice,
# SupportsIndex]` but got `str`.
sentence["value"]
.replace(DEFAULT_IMAGE_TOKEN, "")
.replace("<video>", "")
.strip()
)
# pyre-fixme[6]: For 1st argument expected `Union[slice,
# SupportsIndex]` but got `str`.
sentence["value"] = DEFAULT_IMAGE_TOKEN + "\n" + sentence["value"]
# pyre-fixme[6]: For 1st argument expected `Union[slice,
# SupportsIndex]` but got `str`.
sentence["value"] = sentence["value"].strip()
if "mmtag" in conversation_lib.default_conversation.version:
# pyre-fixme[6]: For 1st argument expected `Union[slice,
# SupportsIndex]` but got `str`.
sentence["value"] = sentence["value"].replace(
DEFAULT_IMAGE_TOKEN,
"<Image>" + DEFAULT_IMAGE_TOKEN + "</Image>",
)
replace_token = DEFAULT_IMAGE_TOKEN
if data_args.mm_use_im_start_end:
replace_token = (
DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
)
# pyre-fixme[6]: For 1st argument expected `Union[slice, SupportsIndex]`
# but got `str`.
sentence["value"] = sentence["value"].replace(
DEFAULT_IMAGE_TOKEN, replace_token
)
# pyre-fixme[7]: Expected `Dict[typing.Any, typing.Any]` but got `Sequence[str]`.
return sources
def preprocess_llama_2(
# pyre-fixme[2]: Parameter must be annotated.
sources,
tokenizer: transformers.PreTrainedTokenizer,
has_image: bool = False,
# pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use
# `typing.Dict[<key type>, <value type>]` to avoid runtime subscripting errors.
) -> Dict:
conv = conversation_lib.default_conversation.copy()
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
# Apply prompt templates
conversations = []
for i, source in enumerate(sources):
if roles[source[0]["from"]] != conv.roles[0]:
# Skip the first one if it is not from human
source = source[1:]
conv.messages = []
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
assert role == conv.roles[j % 2], f"{i}"
conv.append_message(role, sentence["value"])
conversations.append(conv.get_prompt())
# Tokenize conversations
if has_image:
input_ids = torch.stack(
[
tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
for prompt in conversations
],
dim=0,
)
else:
input_ids = tokenizer(
conversations,
return_tensors="pt",
padding="longest",
max_length=tokenizer.model_max_length,
truncation=True,
).input_ids
targets = input_ids.clone()
assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_2
# Mask targets
sep = "[/INST] "
for conversation, target in zip(conversations, targets):
total_len = int(target.ne(tokenizer.pad_token_id).sum())
rounds = conversation.split(conv.sep2)
cur_len = 1
target[:cur_len] = IGNORE_INDEX
for i, rou in enumerate(rounds):
if rou == "":
break
parts = rou.split(sep)
if len(parts) != 2:
break
parts[0] += sep
if has_image:
round_len = len(tokenizer_image_token(rou, tokenizer))
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2
else:
round_len = len(tokenizer(rou).input_ids)
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
cur_len += round_len
target[cur_len:] = IGNORE_INDEX
if cur_len < tokenizer.model_max_length:
if cur_len != total_len:
target[:] = IGNORE_INDEX
print(
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
f" (ignored)"
)
return dict(
input_ids=input_ids,
labels=targets,
)
def preprocess_v1(
# pyre-fixme[2]: Parameter must be annotated.
sources,
tokenizer: transformers.PreTrainedTokenizer,
has_image: bool = False,
# pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use
# `typing.Dict[<key type>, <value type>]` to avoid runtime subscripting errors.
) -> Dict:
conv = conversation_lib.default_conversation.copy()
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
# Apply prompt templates
conversations = []
for i, source in enumerate(sources):
if roles[source[0]["from"]] != conv.roles[0]:
# Skip the first one if it is not from human
source = source[1:]
conv.messages = []
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
assert role == conv.roles[j % 2], f"{i}"
conv.append_message(role, sentence["value"])
conversations.append(conv.get_prompt())
# Tokenize conversations
if has_image:
input_ids = torch.stack(
[
tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
for prompt in conversations
],
dim=0,
)
else:
input_ids = tokenizer(
conversations,
return_tensors="pt",
padding="longest",
max_length=tokenizer.model_max_length,
truncation=True,
).input_ids
targets = input_ids.clone()
assert conv.sep_style == conversation_lib.SeparatorStyle.TWO
# Mask targets
sep = conv.sep + conv.roles[1] + ": "
for conversation, target in zip(conversations, targets):
total_len = int(target.ne(tokenizer.pad_token_id).sum())
rounds = conversation.split(conv.sep2)
cur_len = 1
target[:cur_len] = IGNORE_INDEX
for i, rou in enumerate(rounds):
if rou == "":
break
parts = rou.split(sep)
if len(parts) != 2:
break
parts[0] += sep
if has_image:
round_len = len(tokenizer_image_token(rou, tokenizer))
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2
else:
round_len = len(tokenizer(rou).input_ids)
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
# pyre-fixme
if i != 0 and not tokenizer.legacy and IS_TOKENIZER_GREATER_THAN_0_14:
round_len -= 1
instruction_len -= 1
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
cur_len += round_len
target[cur_len:] = IGNORE_INDEX
if cur_len < tokenizer.model_max_length:
if cur_len != total_len:
target[:] = IGNORE_INDEX
print(
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
f" (ignored)"
)
return dict(
input_ids=input_ids,
labels=targets,
)
# pyre-fixme[3]: Return type must be annotated.
def tokenizer_image_token(
# pyre-fixme[2]: Parameter must be annotated.
prompt,
# pyre-fixme[2]: Parameter must be annotated.
tokenizer,
# pyre-fixme[2]: Parameter must be annotated.
image_token_index=IMAGE_TOKEN_INDEX,
# pyre-fixme[2]: Parameter must be annotated.
return_tensors=None,
):
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")]
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]
input_ids = []
offset = 0
if (
len(prompt_chunks) > 0
and len(prompt_chunks[0]) > 0
and prompt_chunks[0][0] == tokenizer.bos_token_id
):
offset = 1
input_ids.append(prompt_chunks[0][0])
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
input_ids.extend(x[offset:])
if return_tensors is not None:
if return_tensors == "pt":
return torch.tensor(input_ids, dtype=torch.long)
raise ValueError(f"Unsupported tensor type: {return_tensors}")
return input_ids
# pyre-fixme[3]: Return type must be annotated.
def tokenizer_image_token_llama3(
# pyre-fixme[2]: Parameter must be annotated.
prompt,
# pyre-fixme[2]: Parameter must be annotated.
tokenizer,
# pyre-fixme[2]: Parameter must be annotated.
image_token_index=IMAGE_TOKEN_INDEX,
# pyre-fixme[2]: Parameter must be annotated.
return_tensors=None,
):
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")]
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]
input_ids = []
for x in insert_separator(prompt_chunks, [image_token_index]):
input_ids.extend(x)
if return_tensors is not None:
if return_tensors == "pt":
return torch.tensor(input_ids, dtype=torch.long)
raise ValueError(f"Unsupported tensor type: {return_tensors}")
return input_ids
def preprocess_qwen(
# pyre-fixme[2]: Parameter must be annotated.
sources,
tokenizer: transformers.PreTrainedTokenizer,
has_image: bool = False,
system_message: str = "You are a helpful assistant.",
# pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use
# `typing.Dict[<key type>, <value type>]` to avoid runtime subscripting errors.
) -> Dict:
# roles = {"human": "<|im_start|>user", "gpt": "<|im_start|>assistant"}
roles = {"human": "user", "gpt": "assistant"}
# Add image tokens to tokenizer as a special tokens
# Use a deepcopy of tokenizer so that we don't modify on the tokenizer
tokenizer = copy.deepcopy(tokenizer)
# When there is actually an image, we add the image tokens as a special token
if has_image:
tokenizer.add_tokens(["<image>"], special_tokens=True)
image_token_index = tokenizer.convert_tokens_to_ids("<image>")
im_start, im_end = tokenizer.additional_special_tokens_ids
# unmask_tokens = ["<|im_start|>", "<|im_start|>", "\n"]
unmask_tokens_idx = [198, im_start, im_end]
nl_tokens = tokenizer("\n").input_ids
# Reset Qwen chat templates so that it won't include system message every time we apply
chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
tokenizer.chat_template = chat_template
# _system = tokenizer("system").input_ids + nl_tokens
# _user = tokenizer("user").input_ids + nl_tokens
# _assistant = tokenizer("assistant").input_ids + nl_tokens
# Apply prompt templates
input_ids, targets = [], []
for i, source in enumerate(sources):
if roles[source[0]["from"]] != roles["human"]:
source = source[1:]
input_id, target = [], []
# New version, use apply chat template
# Build system message for each sentence
input_id += tokenizer.apply_chat_template(
[{"role": "system", "content": system_message}]
)
target += [IGNORE_INDEX] * len(input_id)
for conv in source:
# Make sure llava data can load
try:
role = conv["role"]
content = conv["content"]
except:
role = conv["from"]
content = conv["value"]
role = roles.get(role, role)
conv = [{"role": role, "content": content}]
encode_id = tokenizer.apply_chat_template(conv)
input_id += encode_id
if role in ["user", "system"]:
target += [IGNORE_INDEX] * len(encode_id)
else:
target += encode_id
assert len(input_id) == len(target), f"{len(input_id)} != {len(target)}"
for idx, encode_id in enumerate(input_id):
if encode_id in unmask_tokens_idx:
target[idx] = encode_id
if encode_id == image_token_index:
input_id[idx] = IMAGE_TOKEN_INDEX
input_ids.append(input_id)
targets.append(target)
input_ids = torch.tensor(input_ids, dtype=torch.long)
targets = torch.tensor(targets, dtype=torch.long)
return dict(
input_ids=input_ids, # tensor(bs x seq_len)
labels=targets, # tensor(bs x seq_len)
)
def preprocess_llama3(
# pyre-fixme[2]: Parameter must be annotated.
sources,
tokenizer: transformers.PreTrainedTokenizer,
has_image: bool = False,
system_message: str = "You are a helpful assistant.",
# pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use
# `typing.Dict[<key type>, <value type>]` to avoid runtime subscripting errors.
) -> Dict:
# roles = {"human": "<|start_header_id|>user<|end_header_id|>", "gpt": "<|start_header_id|>assistant<|end_header_id|>"}
roles = {"human": "user", "gpt": "assistant"}
# Add image tokens to tokenizer as a special tokens
# Use a deepcopy of tokenizer so that we don't modify on the tokenizer
tokenizer = copy.deepcopy(tokenizer)
# When there is actually an image, we add the image tokens as a special token
if has_image:
tokenizer.add_tokens(["<image>"], special_tokens=True)
image_token_index = tokenizer.convert_tokens_to_ids("<image>")
bos_token_id = tokenizer.convert_tokens_to_ids("<|begin_of_text|>")
start_header_id = tokenizer.convert_tokens_to_ids("<|start_header_id|>")
end_header_id = tokenizer.convert_tokens_to_ids("<|end_header_id|>")
eot_id = tokenizer.convert_tokens_to_ids("<|eot_id|>")
unmask_tokens = [
"<|begin_of_text|>",
"<|start_header_id|>",
"<|end_header_id|>",
"<|eot_id|>",
"\n\n",
]
unmask_tokens_idx = [tokenizer.convert_tokens_to_ids(tok) for tok in unmask_tokens]
# After update, calling tokenizer of llama3 will
# auto add bos id for the tokens. ヽ(`⌒´)ノ
# pyre-fixme[53]: Captured variable `bos_token_id` is not annotated.
# pyre-fixme[3]: Return type must be annotated.
# pyre-fixme[2]: Parameter must be annotated.
def safe_tokenizer_llama3(text):
input_ids = tokenizer(text).input_ids
if input_ids[0] == bos_token_id:
input_ids = input_ids[1:]
return input_ids
nl_tokens = tokenizer.convert_tokens_to_ids("\n\n")
# chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{%- if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}{%- endif %}"
chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}"
tokenizer.chat_template = chat_template
# Apply prompt templates
input_ids, targets = [], []
for i, source in enumerate(sources):
if roles[source[0]["from"]] != roles["human"]:
source = source[1:]
input_id, target = [], []
# New version, use apply chat template
# Build system message for each sentence
input_id += tokenizer.apply_chat_template(
[{"role": "system", "content": system_message}]
# pyre-fixme[6]: For 1st argument expected `Union[int, str]` but got `slice`.
)[:-4]
target += [IGNORE_INDEX] * len(input_id)
for conv in source:
# Make sure llava data can load
try:
role = conv["role"]
content = conv["content"]
except:
role = conv["from"]
content = conv["value"]
role = roles.get(role, role)
conv = [{"role": role, "content": content}]
# First is bos token we don't need here
# pyre-fixme[6]: For 1st argument expected `Union[int, str]` but got
# `slice`.
encode_id = tokenizer.apply_chat_template(conv)[1:-4]
input_id += encode_id
if role in ["user", "system"]:
target += [IGNORE_INDEX] * len(encode_id)
else:
target += encode_id
assert len(input_id) == len(target), f"{len(input_id)} != {len(target)}"
for idx, encode_id in enumerate(input_id):
if encode_id in unmask_tokens_idx:
target[idx] = encode_id
if encode_id == image_token_index:
input_id[idx] = IMAGE_TOKEN_INDEX
input_ids.append(input_id)
targets.append(target)
input_ids = torch.tensor(input_ids, dtype=torch.long)
targets = torch.tensor(targets, dtype=torch.long)
#print("input_ids", input_ids, flush=True)
#print("targets", targets, flush=True)
return dict(
input_ids=input_ids, # tensor(bs x seq_len)
labels=targets, # tensor(bs x seq_len)
)
def preprocess_llama_3_1(
# pyre-fixme[2]: Parameter must be annotated.
sources,
tokenizer: transformers.PreTrainedTokenizer,
has_image: bool = False,
# pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use
# `typing.Dict[<key type>, <value type>]` to avoid runtime subscripting errors.
) -> Dict:
conv = conversation_lib.default_conversation.copy()
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
# Apply prompt templates
conversations = []
for i, source in enumerate(sources):
if roles[source[0]["from"]] != conv.roles[0]:
# Skip the first one if it is not from human
source = source[1:]
conv.messages = []
for j, sentence in enumerate(source):
if sentence["from"] == "Answer":
sentence["from"] = "gpt" # data bug
role = roles[sentence["from"]]
# assert role == conv.roles[j % 2], f"{i}"
conv.append_message(role, sentence["value"])
conversations.append(conv.get_prompt())
# Tokenize conversations
if has_image:
input_ids = torch.stack(
[
tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
for prompt in conversations
],
dim=0,
)
else:
input_ids = tokenizer(
conversations,
return_tensors="pt",
padding="longest",
max_length=tokenizer.model_max_length,
truncation=True,
).input_ids
# remove the first bos token
if input_ids[0][0] == input_ids[0][1] == tokenizer.bos_token_id:
input_ids = input_ids[:, 1:]
targets = input_ids.clone()
assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_3_1
# Mask targets
sep = "<|start_header_id|>" + conv.roles[1] + "<|end_header_id|>" + "\n\n"
# sep = conv.sep + conv.roles[1] + ": "
for conversation, target in zip(conversations, targets):
total_len = int(target.shape[0])
rounds = conversation.split(conv.tokenizer.eos_token)
rounds = [rounds[0]] + [
rounds[idx] + rounds[idx + 1] for idx in range(1, len(rounds) - 1, 2)
]
cur_len = 1
target[:cur_len] = IGNORE_INDEX
for i, rou in enumerate(rounds):
if rou == "":
break
parts = rou.split(sep)
if len(parts) != 2 and i != 0:
break
if i == 0:
round_len = len(tokenizer(rou, add_special_tokens=False).input_ids)
instruction_len = len(
tokenizer(rou, add_special_tokens=False).input_ids
)
else:
parts[0] += sep
if has_image:
round_len = len(tokenizer_image_token(rou, tokenizer)) + 1
instruction_len = len(tokenizer_image_token(parts[0], tokenizer))
else:
round_len = len(tokenizer(rou).input_ids) + 1
instruction_len = len(tokenizer(parts[0]).input_ids)
# if i > 0: round_len += 1
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
cur_len += round_len
target[cur_len:] = IGNORE_INDEX
cur_len = cur_len + len(tokenizer(sep, add_special_tokens=False).input_ids)
# if cur_len > tokenizer.model_max_length: print(f"WARNING: max length context")
if cur_len < tokenizer.model_max_length:
if cur_len != total_len:
target[:] = IGNORE_INDEX
print(
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
f" (ignored)"
)
return dict(
input_ids=input_ids,
labels=targets,
)
def preprocess_llama_3_2(
# pyre-fixme[2]: Parameter must be annotated.
sources,
tokenizer: transformers.PreTrainedTokenizer,
has_image: bool = False,
# pyre-fixme[24]: Generic type `dict` expects 2 type parameters, use
# `typing.Dict[<key type>, <value type>]` to avoid runtime subscripting errors.
) -> Dict:
conv = conversation_lib.default_conversation.copy()
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
# Apply prompt templates
conversations = []
for i, source in enumerate(sources):
if roles[source[0]["from"]] != conv.roles[0]:
# Skip the first one if it is not from human
source = source[1:]
conv.messages = []
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
assert role == conv.roles[j % 2], f"{i}"