-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataManager.py
executable file
·188 lines (140 loc) · 5.76 KB
/
dataManager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Author: Jiajun Zhu
import poloniex
import time
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn import preprocessing
import constants
class DataManager:
def __init__(self):
"""
constructor
Args:
"""
self.dataframe = None
self.time_train = None
self.time_test = None
self.train_original_df = None
self.test_original_df = None
self.train_diffrenced = None
self.test_diffrenced = None
self.train_scaled = None
self.test_scaled = None
self.scaler = None
self.train_percent = 0.8
self.diff_interval = 1
self.column = "close"
def return_chart_data(self, pair, period, start_time, end_time):
"""
retrieve data from poloniex.
"""
polo = poloniex.Poloniex()
chart_data = polo.returnChartData(pair,
period=period,
start=time.mktime(time.strptime(start_time, "%Y-%m-%d %H:%M")),
end=time.mktime(time.strptime(end_time, "%Y-%m-%d %H:%M")))
df = pd.DataFrame(chart_data)
df["datetime"] = pd.to_datetime(df["date"].astype(int) , unit="s")
df = df.set_index("datetime")
fig, ax1 = plt.subplots(figsize=(20, 10))
ax1.plot(df.index, df[self.column].astype(np.float32), label = "Coin Price", color="deeppink")
ax2 = ax1.twinx()
ax2.plot(df.index, df["quoteVolume"].astype(np.float32), label = "Trading Volume of Coin", color="dodgerblue")
ax1.legend(loc=2, fontsize=14)
ax2.legend(loc=1, fontsize=14)
ax1.tick_params(labelsize=14)
ax2.tick_params(labelsize=14)
plt.show()
self.dataframe = df.loc[:, ["close"]].astype(np.float32)
def range_scale_data(self, matrix):
"""
scale data to a specified range
Args:
dataframe: input data
Returns:
range scaled dataframe
"""
min_max_scaler = preprocessing.MinMaxScaler(feature_range=(-1, 1))
return min_max_scaler.fit_transform(matrix), min_max_scaler
def inverse_scaled_data(self, data):
"""
inverse scaled data
"""
return self.scaler.inverse_transform(data)
def __generate_series_data_for_supervised_learning(self, data_array, datetime_array):
"""
split "close" column as explanatory_and_target_variables.
"""
t = np.empty((0,1), int)
x = np.empty((0,constants.SEQ_LENGTH), np.float32)
y = np.empty((0,1), np.float32)
m = len(data_array)
for n in range(constants.SEQ_LENGTH, m):
new_t = np.array([[datetime_array[n]]])
new_x = np.array([data_array[n-constants.SEQ_LENGTH: n]])
new_y = np.array([[data_array[n]]])
t = np.append(t, new_t, axis=0) # append row
x = np.append(x, new_x, axis=0)
y = np.append(y, new_y, axis=0)
self.dataframe = self.dataframe.iloc[constants.SEQ_LENGTH:, :]
return t, np.concatenate([x, y], axis=1)
def __difference_data(self, data_array):
"""
difference the dataframe.
this step trys to remove the trend.
"""
diff = np.empty((0,1), np.float32)
for i in range(self.diff_interval, len(data_array)):
value = data_array[i] - data_array[i - self.diff_interval]
diff = np.append(diff, value)
print(self.dataframe)
self.dataframe = self.dataframe.iloc[self.diff_interval:, :]
print(self.dataframe)
fig, ax1 = plt.subplots(figsize=(20, 10))
ax1.plot(self.dataframe.index, diff, label = "differenced", color="deeppink")
ax1.legend(loc=2, fontsize=14)
ax1.tick_params(labelsize=14)
plt.show()
return diff
def inverse_differenced_data(self, y, previous_y):
"""
this method only revert data for one step.
"""
return y + previous_y
def __split_data(self, data_array, datetime_array):
"""
split dataset as training and test data.
"""
m = len(data_array)
train_batches = int(m * self.train_percent / constants.BATCH_SIZE)
# 80% training data(cv included), 20% test data
m_train = train_batches * constants.BATCH_SIZE
time_train, time_test = datetime_array[:m_train], datetime_array[m_train:]
data_train, data_test = data_array[:m_train], data_array[m_train:]
self.train_original_df = self.dataframe.iloc[:m_train, :]
self.test_original_df = self.dataframe.iloc[m_train:, :]
self.time_train = time_train
self.time_test = time_test
self.train_diffrenced = data_train
self.test_diffrenced = data_test
def prepare_data(self):
"""
prepare training, cross validation and test data.
"""
# difference data
data_array = self.__difference_data(self.dataframe[self.column].values)
time_array, data_array = self.__generate_series_data_for_supervised_learning(data_array, self.dataframe.index)
self.__split_data(data_array, time_array)
data_train_scaled, scaler = self.range_scale_data(self.train_diffrenced)
self.scaler = scaler
self.train_scaled = data_train_scaled
self.test_scaled = scaler.transform(self.test_diffrenced)
def inverse_data(self, x, y_pred, previos_y):
# inverse range
y_pred_unscaled = self.inverse_scaled_data(np.concatenate([x, y_pred], axis=1))[:, -1]
# inverse difference
y_pred_indiffereced = self.inverse_differenced_data(y_pred_unscaled, previos_y)
return y_pred_indiffereced