-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlm_harness_eval.py
39 lines (28 loc) · 1.25 KB
/
lm_harness_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
import transformers
from transformers import AutoTokenizer
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
from lm_eval.api.model import LM
from lm_eval.models.huggingface import HFLM
from lm_eval.api.registry import register_model
from lm_eval.__main__ import cli_evaluate
@register_model("mamba")
class MambaEvalWrapper(HFLM):
AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
def __init__(self, pretrained="state-spaces/mamba-1.4b", max_length=2048, batch_size=None, device="cuda",
dtype=torch.float16):
LM.__init__(self)
self._model = MambaLMHeadModel.from_pretrained(pretrained, device=device, dtype=dtype)
self.tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
self.vocab_size = self.tokenizer.vocab_size
self._batch_size = batch_size if batch_size is None else 64
self._max_length = max_length
self._device = torch.device(device)
@property
def batch_size(self):
return self._batch_size
def _model_generate(self, context, max_length, stop, **generation_kwargs):
raise NotImplementedError()
if __name__ == "__main__":
cli_evaluate()