diff --git a/api/nbnode.apply.html b/api/nbnode.apply.html index 6ae06db..1965790 100644 --- a/api/nbnode.apply.html +++ b/api/nbnode.apply.html @@ -41,7 +41,7 @@
Count the number of rows in node.data (per node) grouped by “sample_name” and concat them into a dataframe
diff --git a/api/nbnode.html b/api/nbnode.html index 3d05b1d..d1e267a 100644 --- a/api/nbnode.html +++ b/api/nbnode.html @@ -283,7 +283,7 @@Submodules
- -property data: DataFrame¶
+property data: DataFrame¶Data of a node for its ids.
root._data contains all data. However, each node only “holds” a subset of the data. To not have to copy the data for each node, we just subset the data @@ -351,7 +351,7 @@
Submodules
- -export_counts(only_leafnodes: bool = False, node_counts_dtype='int64') DataFrame [source]¶
+export_counts(only_leafnodes: bool = False, node_counts_dtype='int64') DataFrame [source]¶Export the counts of the predicted celltree to a pd.Dataframe.
Rows are the samples, columns the node names get_name_full()
@@ -500,7 +500,7 @@
Submodules
- -predict(values: List | Dict | DataFrame | None = None, names: list | None = None, allow_unfitting_data: bool = False, allow_part_predictions: bool = False) NBNode | List[NBNode] | Series [source]¶
+predict(values: List | Dict | DataFrame | None = None, names: list | None = None, allow_unfitting_data: bool = False, allow_part_predictions: bool = False) NBNode | List[NBNode] | Series [source]¶See
single_prediction
.But you can put in dataframes or ndarrays instead of only dict + value/key paired lists.
@@ -1013,7 +1013,7 @@Submodules
nbnode.nbnode_util module¶
- -nbnode.nbnode_util.frame_cov(dt_frame: Frame) DataFrame [source]¶
+nbnode.nbnode_util.frame_cov(dt_frame: Frame) DataFrame [source]¶Compute the covariance matrix of a datatable frame from all columns.
Similar to pd.DataFrame.cov().
@@ -1031,7 +1031,7 @@
Submodules
- -nbnode.nbnode_util.per_node_data_fun(x: DataFrame, fun_name: str, include_features: List[str | int] | slice | None = None, *fun_args, **fun_kwargs) DataFrame | Any [source]¶
+nbnode.nbnode_util.per_node_data_fun(x: DataFrame, fun_name: str, include_features: List[str | int] | slice | None = None, *fun_args, **fun_kwargs) DataFrame | Any [source]¶per_node_data_fun.
To be used in NBnode.node.apply() to apply a function to the data of each node.
diff --git a/api/nbnode.simulation.html b/api/nbnode.simulation.html index c475eff..d9e3991 100644 --- a/api/nbnode.simulation.html +++ b/api/nbnode.simulation.html @@ -41,12 +41,12 @@Submodules
nbnode.simulation.FlowSimulationTree module¶
- -class nbnode.simulation.FlowSimulationTree.BaseFlowSimulationTree(rootnode: NBNode, data_cellgroup_col: str = 'sample_name', node_percentages: DataFrame | None = None, seed: int = 12987, include_features: List[str] = 'dataset_melanoma', verbose: bool = False)[source]¶
+class nbnode.simulation.FlowSimulationTree.BaseFlowSimulationTree(rootnode: NBNode, data_cellgroup_col: str = 'sample_name', node_percentages: DataFrame | None = None, seed: int = 12987, include_features: List[str] = 'dataset_melanoma', verbose: bool = False)[source]¶Bases:
object
Base class for flow simulation.
- -estimate_cell_distributions(nodes: List[NBNode]) Dict[str, Dict[Literal['mu', 'cov'], DataFrame]] [source]¶
+estimate_cell_distributions(nodes: List[NBNode]) Dict[str, Dict[Literal['mu', 'cov'], DataFrame]] [source]¶Estimate the distribution of cells in each node.
If no distribution can be estimated (less than 2 cells), @@ -178,7 +178,7 @@
Submodules
- -ncells_from_percentages(percentages: DataFrame, n_cells: int) List[int] [source]¶
+ncells_from_percentages(percentages: DataFrame, n_cells: int) List[int] [source]¶‘Sample’ the number of cells according to the random percentages
- Parameters:
@@ -234,7 +234,7 @@Submodules
- -sample(n_cells: int = 10000, return_sampled_cell_numbers: bool = False, use_only_diagonal_covmat: bool = True, **population_parameters) Tuple[DataFrame, Series] | DataFrame [source]¶
+sample(n_cells: int = 10000, return_sampled_cell_numbers: bool = False, use_only_diagonal_covmat: bool = True, **population_parameters) Tuple[DataFrame, Series] | DataFrame [source]¶Sample cells from the tree.
- Parameters:
@@ -261,7 +261,7 @@Submodules
- -sample_populations(n_cells: int = 10000, **population_parameters) Series [source]¶
+sample_populations(n_cells: int = 10000, **population_parameters) Series [source]¶Generate number of cells according to leaf node population distributions.
- Parameters:
@@ -291,12 +291,12 @@Submodules
- -class nbnode.simulation.FlowSimulationTree.FlowSimulationTreeDirichlet(rootnode: NBNode, data_cellgroup_col: str = 'sample_name', node_percentages: DataFrame | None = None, seed: int = 12987, include_features='dataset_melanoma', verbose: bool = False)[source]¶
+class nbnode.simulation.FlowSimulationTree.FlowSimulationTreeDirichlet(rootnode: NBNode, data_cellgroup_col: str = 'sample_name', node_percentages: DataFrame | None = None, seed: int = 12987, include_features='dataset_melanoma', verbose: bool = False)[source]¶Bases:
BaseFlowSimulationTree
Simulate a tree of cell populations using the Dirichlet distribution.
- -property alpha_all: Series¶
+property alpha_all: Series¶The alpha parameter of the Dirichlet distribution for all populations
Concentration parameters “alpha” of the Dirichlet distribution. The alpha parameter is a vector of positive values, where each value @@ -323,7 +323,7 @@
Submodules
- -generate_populations(population_parameters, n_cells: int, *args, **kwargs) DataFrame [source]¶
+generate_populations(population_parameters, n_cells: int, *args, **kwargs) DataFrame [source]¶Generate a population of cells using the Dirichlet distribution.
- Parameters:
@@ -350,7 +350,7 @@Submodules
- -property mean_leafs: Series¶
+property mean_leafs: Series¶Mean from dirichlet distribution
Estimating a Dirichlet distribution Thomas P. Minka @@ -551,7 +551,7 @@
Submodules
- -sample() Tuple[DataFrame, Dict[str, Any], List[DataFrame]] [source]¶
+sample() Tuple[DataFrame, Dict[str, Any], List[DataFrame]] [source]¶A method to sample with a relative change in a population mean.
See the __init__ method for the description of the arguments.
@@ -573,7 +573,7 @@
Submodules
- -sample_customize(n_samples=None, n_cells=None, change_pop_mean_proportional=None, use_only_diagonal_covmat=None, verbose=None, seed_sample_0=None, save_dir=None, _only_return_sampled_cell_numbers=None, save_changed_parameters=False) Tuple[DataFrame, Dict[str, Any], List[DataFrame]] [source]¶
+sample_customize(n_samples=None, n_cells=None, change_pop_mean_proportional=None, use_only_diagonal_covmat=None, verbose=None, seed_sample_0=None, save_dir=None, _only_return_sampled_cell_numbers=None, save_changed_parameters=False) Tuple[DataFrame, Dict[str, Any], List[DataFrame]] [source]¶A customizable method to sample with a relative change in a population mean.
See the __init__ method for the description of the arguments. In contrast to
.sample()
, this method allows to change each parameter @@ -604,7 +604,7 @@Submodules
nbnode.simulation.sim_proportional module¶
- -nbnode.simulation.sim_proportional.sim_proportional(flowsim: FlowSimulationTreeDirichlet, n_samples=100, n_cells=25000, use_only_diagonal_covmat=True, change_pop_mean_proportional={'/AllCells/CD4+/CD8-/Tem': 1}, save_dir='sim/intraassay/sim00_baseline', seed_sample_0=129873, verbose=False, only_return_sampled_cell_numbers=False) Tuple[DataFrame, Dict[str, Any], List[DataFrame]] [source]¶
+nbnode.simulation.sim_proportional.sim_proportional(flowsim: FlowSimulationTreeDirichlet, n_samples=100, n_cells=25000, use_only_diagonal_covmat=True, change_pop_mean_proportional={'/AllCells/CD4+/CD8-/Tem': 1}, save_dir='sim/intraassay/sim00_baseline', seed_sample_0=129873, verbose=False, only_return_sampled_cell_numbers=False) Tuple[DataFrame, Dict[str, Any], List[DataFrame]] [source]¶This function simulates new cells (n_cells) for n_samples samples according to the given flow simulation flowsim.
@@ -669,7 +669,7 @@Submodules
nbnode.simulation.sim_target module¶
- -nbnode.simulation.sim_target.sim_target(flowsim: FlowSimulationTreeDirichlet, change_pop_mean_target: List[Dict[str, float]] = [{'/AllCells/CD4+/CD8-/Tem': 0.05}], n_cells=25000, use_only_diagonal_covmat=True, save_dir='sim/intraassay/sim00_target', sample_name=None, seed_sample_0=129873, verbose=False, only_return_sampled_cell_numbers=False, save_changed_parameters=False) Tuple[DataFrame, Dict[str, Any], List[DataFrame]] [source]¶
+nbnode.simulation.sim_target.sim_target(flowsim: FlowSimulationTreeDirichlet, change_pop_mean_target: List[Dict[str, float]] = [{'/AllCells/CD4+/CD8-/Tem': 0.05}], n_cells=25000, use_only_diagonal_covmat=True, save_dir='sim/intraassay/sim00_target', sample_name=None, seed_sample_0=129873, verbose=False, only_return_sampled_cell_numbers=False, save_changed_parameters=False) Tuple[DataFrame, Dict[str, Any], List[DataFrame]] [source]¶This function simulates new cells (n_cells) for n_samples samples according to the given flow simulation flowsim.
diff --git a/api/nbnode.specific_analyses.intraassay.html b/api/nbnode.specific_analyses.intraassay.html index 4559494..01037f0 100644 --- a/api/nbnode.specific_analyses.intraassay.html +++ b/api/nbnode.specific_analyses.intraassay.html @@ -69,7 +69,7 @@Submodules
nbnode.specific_analyses.intraassay.gate_init module¶
- -nbnode.specific_analyses.intraassay.gate_init.gate_init(sample_list: List[str] | None = None) Tuple[NBNode, DataFrame, FlowSimulationTreeDirichlet] [source]¶
+nbnode.specific_analyses.intraassay.gate_init.gate_init(sample_list: List[str] | None = None) Tuple[NBNode, DataFrame, FlowSimulationTreeDirichlet] [source]¶Gate the intraassay samples and generate the Dirichlet-based simulation.
- Parameters:
diff --git a/api/nbnode.utils.html b/api/nbnode.utils.html index ae309ed..b4cdef4 100644 --- a/api/nbnode.utils.html +++ b/api/nbnode.utils.html @@ -40,7 +40,7 @@Submodules
nbnode.utils.merge_leaf_nodes module¶