-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1b_Fotoreactions_2050.R
331 lines (265 loc) · 12.8 KB
/
1b_Fotoreactions_2050.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
#
# Mass Balance delle foto reazioni
# output fotoreactions indipendenti dalla massa
#
# evasion indipendente da massa hg in acque,
# anche da conc atmosfera, a questi livelli....
# importante temp correction factor....
#
#
# FORMULA OUTPUT:
# kred_adj<- LNt_red * kred * fd *(fDOChg*100) [1/day]
#
#kred * massa = massa/day
#
# ok i calcoli,
#fatto test !
#
# gen 2013-dic 2013 --> [1958:1969]
#
# primo anno out ha 13 out, gli alti 12
# 2414 out/200 anni = 12.07
# sim 1850 - 2050
#
setwd('C:/Users/Ginevra/Google Drive/MERCURIO/BlackSea/implementazione')
setwd('C:/Users/gi/Documents/Lavoro/SIM_finale')
atm_hg<-read.table("atm_hg.txt", header = F); str(atm_hg)
atm_hg0<-atm_hg$V1 # --- atm conc of hg0 -
str(atm_hg0)
light<-read.table("light_norm.txt", header = TRUE); names(light)<-'light' ; light_sur<-light$light
light_sur_w_m2<-read.table("light_w_m2.txt", header = TRUE); light_sur_w_m2<-light_sur_w_m2$wm2
fd<-read.table("frac_day.txt", header = F);
kred<-0.57
kox<-0.13
kdeg<-0.003
#Leggi model output
setwd("C:/Users/Ginevra/Desktop/new_sim_BS/19_luglio/Anne1e_morehg")
setwd("C:/Users/Ginevra/Desktop/new_sim_BS/19_luglio/SIM_finale2/Anne1e_morehg_tris_pristine2")
evasion<-read.csv("Volatilization_Loss_Rate.csv", header=FALSE, skip = 1, sep = ",", dec=".")
names(evasion)<-c("Time", "Oxic1","Oxic2", "CIL", "Oxycline","Suboxic1", "Suboxic2",
"Anoxic","Anoxic2","Anoxic3","Sed1","Sed2")
evasion<-evasion [2:2413,1:13]
str(evasion)
cCC<-tail(evasion)
hg<-read.csv("Dissolved_Divalent_Hg.csv", header=FALSE, skip = 1,sep = ",", dec=".")
names(hg)<-c("Time", "Oxic1","Oxic2", "CIL", "Oxycline","Suboxic1", "Suboxic2",
"Anoxic","Anoxic2","Anoxic3","Sed1","Sed2")
str(hg$Oxic1)
hg<-hg [2:2413,1:13]
hgT<-read.csv("Total_Hg.csv", header=FALSE, skip = 1, sep = ",")
names(hgT)<-c("Time", "Oxic1","Oxic2", "CIL", "Oxycline","Suboxic1", "Suboxic2",
"Anoxic","Anoxic2","Anoxic3","Sed1","Sed2")
hgT<-hgT [2:2413,1:13]
str(hgT)
solids<-read.csv("Total_Solids.csv", header=FALSE, skip = 1,sep = ",", dec=".")
names(solids)<-c("Time", "Oxic1","Oxic2", "CIL", "Oxycline","Suboxic1", "Suboxic2",
"Anoxic","Anoxic2","Anoxic3","Sed1","Sed2")
solids<-solids [2:2413,1:13]
Phg<-read.csv("Total_Sorbed_Divalent_Hg.csv", header=FALSE, skip = 1,sep = ",", dec=".")
names(Phg)<-c("Time", "Oxic1","Oxic2", "CIL", "Oxycline","Suboxic1", "Suboxic2",
"Anoxic","Anoxic2","Anoxic3","Sed1","Sed2")
Phg<-Phg [2:2413,1:13]
DOChg<-read.csv("DOC_Sorbed_Divalent_Hg.csv", header=FALSE, skip = 1,sep = ",", dec=".")
names(DOChg)<-c("Time", "Oxic1","Oxic2", "CIL", "Oxycline","Suboxic1", "Suboxic2",
"Anoxic","Anoxic2","Anoxic3","Sed1","Sed2")
DOChg<-DOChg [2:2413,1:13]
mehg<-read.csv("Dissolved_Methyl_Hg.csv", header=FALSE, skip = 1,sep = ",", dec=".")
names(mehg)<-c("Time", "Oxic1","Oxic2", "CIL", "Oxycline","Suboxic1", "Suboxic2",
"Anoxic","Anoxic2","Anoxic3","Sed1","Sed2")
mehg<-mehg [2:2413,1:13]
DOCmehg<-read.csv("DOC_Sorbed_Methyl_Hg.csv", header=FALSE, skip = 1,sep = ",", dec=".")
names(DOCmehg)<-c("Time", "Oxic1","Oxic2", "CIL", "Oxycline","Suboxic1", "Suboxic2",
"Anoxic","Anoxic2","Anoxic3","Sed1","Sed2")
DOCmehg<-DOCmehg [2:2413,1:13]
hg0<-read.csv("Elemental_Hg.csv", header=FALSE, skip = 1, sep = ",", dec=".")
names(hg0)<-c("Time", "Oxic1","Oxic2", "CIL", "Oxycline","Suboxic1", "Suboxic2",
"Anoxic","Anoxic2","Anoxic3","Sed1","Sed2")
hg0<-hg0 [2:2413,1:13]
dhg0<-read.csv("Dissolved_Elemental_Hg.csv", header=FALSE, skip = 1,sep = ",", dec=".")
names(dhg0)<-c("Time", "Oxic1","Oxic2", "CIL", "Oxycline","Suboxic1", "Suboxic2",
"Anoxic","Anoxic2","Anoxic3","Sed1","Sed2")
dhg0<-dhg0 [2:2413,1:13]
DOChg0<-read.csv("DOC_Sorbed_Elemental_Hg.csv", header=FALSE, skip = 1,sep = ",", dec=".")
names(DOChg0)<-c("Time", "Oxic1","Oxic2", "CIL", "Oxycline","Suboxic1", "Suboxic2",
"Anoxic","Anoxic2","Anoxic3","Sed1","Sed2")
DOChg0<-DOChg0 [2:2413,1:13]
mehgT<-read.csv("Methyl_Hg.csv", header=FALSE, skip = 1,sep = ",", dec=".")
names(mehgT)<-c("Time", "Oxic1","Oxic2", "CIL", "Oxycline","Suboxic1", "Suboxic2",
"Anoxic","Anoxic2","Anoxic3","Sed1","Sed2")
mehgT<-mehgT [2:2413,1:13]
fotored<-read.csv("Photo_Reduction_Divalent_Hg.csv", header=FALSE, skip = 1, sep = ",", dec=".")
names(fotored)<-c("Time", "Oxic1","Oxic2", "CIL", "Oxycline","Suboxic1", "Suboxic2",
"Anoxic","Anoxic2","Anoxic3","Sed1","Sed2");
fotored<-fotored [2:2413,1:13]
fotodem<-read.csv("Photo_Demethylation_Rate.csv", header=FALSE, skip = 1, sep = ",", dec=".")
names(fotodem)<-c("Time", "Oxic1","Oxic2", "CIL", "Oxycline","Suboxic1", "Suboxic2",
"Anoxic","Anoxic2","Anoxic3","Sed1","Sed2")
fotodem<-fotodem [2:2413,1:13]
silt<-read.csv("Silts_Fines.csv", header=FALSE, skip = 1,sep = ",", dec=".")
names(silt)<-c("Time", "Oxic1", "Oxic2","CIL","Oxycline",
"Suboxic1","Suboxic2", "Anoxic1", "Anoxic2",
"Anoxic3","Sed1","Sed2")
silt<-silt [2:2413,1:13]
POM<-read.csv("Organic_Matter.csv", header=FALSE, skip = 1,sep = ",", dec=".")
names(POM)<-c("Time", "Oxic1", "Oxic2","CIL","Oxycline",
"Suboxic1","Suboxic2", "Anoxic1", "Anoxic2",
"Anoxic3","Sed1","Sed2")
POM<-POM [2:2413,1:13]
str(POM$Time)
oxic_vol_m3<-5.9E+12
oxic_vol_L<-oxic_vol_m3*1000
Model_area <-2.961E+11
time.steps <- hgT$Time # leggo model timestep
time.steps <- trunc(time.steps, 0)
time.steps <- time.steps*24*3600 # trasformo in sec
TEMPO <- as.POSIXct(time.steps, tz= "GMT", origin = "1850-01-01") # creo la var tempo
TEMPO[1:10] # stringa con date
rdate1<-as.Date(TEMPO, tz= "GMT", format="%Y") #creo rdate1 (per xlab)
#------- calcolo frazioni DOC complexed
siltOL<-silt$Oxic1/10^6
POMOL<-POM$Oxic1/10^6
fDOChg2 <-DOChg$Oxic1/(DOChg$Oxic1+hg$Oxic1+Phg$Oxic1); mean(fDOChg, na.rm=TRUE);plot(fDOChg*100)
fDOChg <- (10^3*(2.9*10^-6))/(1+(10^3*(2.9*10^-6))+((siltOL*3000)+(POMOL*(5.1*10^5))))
fdisshg2<-(DOChg$Oxic1+hg$Oxic1)/hgT$Oxic1
#uguale a primam
fDOCmehg <-DOCmehg$Oxic1/mehgT$Oxic1
fDOChg0 <-DOChg0$Oxic1/hg0$Oxic1
fdhg0 <-dhg0$Oxic1/hg0$Oxic1
#-------- conc Hg species pM
Hg0_pM1<-hg0$Oxic1/200.59*1000; mean(hg0$Oxic1)
Hg0_pmols1<-Hg0_pM1*oxic_vol_L # bulk of Hg0 in upper oxic layer
Hg0_kmols1<-Hg0_pmols1/10^15
mean(Hg0_kmols1[1957:1968])
mehg_<-mehgT$Oxic1
mehg_pM<-mehg_/215*1000
MeHg_pmols<-mehg_pM*oxic_vol_L # bulk of MeHg in upper oxic layer
Hg0_kmols1<-Hg0_pmols1/10^15
mean(Hg0_kmols1[1957:1968])
hgII<-(hg$Oxic1+DOChg$Oxic1+Phg$Oxic1) # total HgII (diss, DOC, part)
HgII_pM<-hgII/200.59*1000 # pM
HgII_pmols<-HgII_pM*oxic_vol_L # bulk of HgII in oxic layer
hgT<-hgT$Oxic1 # total Hg
hgI<-(hgT-mehg_-hg0$Oxic1)/200.59*1000
hgI_pmols<-hgI*oxic_vol_L # bulk of HgII in upper oxic layer
hgII_ngL<-hgII
hg0_ngL<-hg0$Oxic1
mehg_ngL<-mehgT$Oxic1
#mean(hg0_g_m3/hgII_g_m3*100) #hg0 %
# ---------
ef_red <-fotored_1_s/fdisshg2 ; mean(ef_red*60*60*24)
mean(ef_red)# quindi questo dovrebbe restituire il tasso in input + o meno
ef_ox <-fotox_1_s /fdisshg2 ; mean(ef_ox*60*60*24)
ef_deg <-fotodem_1_s/fDOCmehg; mean(ef_deg*60*60*24)
# --------- fotoreactions out [1/d] /84600 -> 1/s;
# --------- those rate are given by someting as -> kdeg (1/d) * fDOCmehg (-) adjusted for light intensity
#
# skred = kred*LN(t)*[xdOC*hgII]*10^-6
ke<-0.2 #extintion coeff
e<-2.71828 #nepero
d<-20
fac1<-ke*d
#box depth
#L_ref<-220
#ekde<-e^-fac1
###LNt_red<-(light_sur_w_m2/L_ref)*((1-ekde)/(fac1))
##str(LNt_red)
#plot(LNt_red[12:24], type='l')
out_red_1_d <-fotored$Oxic1; str(out_red_1_d); mean(out_red_1_d)
out_ox_1_d <-(fotored$Oxic1*(kox/kred)*(1/fdisshg2)); mean(out_ox_1_d)
out_dem_1_d <-fotodem$Oxic1; mean(out_dem_1_d[1900:1968])
#kred_adj<- LNt_red[1:1968]*fd$V1[1:1968]*kred*(fDOChg*100); mean(kred_adj)
#mean(out_red_1_d)
#kox_adj<-kred_adj*(kox/kred); mean (kox_adj)
#kdem_adj<- (LNt_red[1:1968]*fd$V1[1:1968]*kdeg*(fDOCmehg*100))
#mean(kdem_adj[1900:1968]/20) # mia formula qua stima di 20 volte?
#mean(out_dem_1_d[1900:1968])
kred_mol_day<-(out_red_1_d*HgII_pmols)/10^12; mean(kred_mol_day)
kox_mol_day<-(out_ox_1_d*Hg0_pmols1)/10^12; mean(kox_mol_day)
kdem_mol_day<-(out_dem_1_d*MeHg_pmols)/10^12; mean(kdem_mol_day)
# kmol trasformate all'anno
fotored_kmols_y<-kred_mol_day*365/1000; mean(fotored_kmols_y)
fotox_kmols_y<-kox_mol_day*365/1000;mean(fotox_kmols_y)
fotodem_kmols_y<- kdem_mol_day*365/1000;mean(fotodem_kmols_y)
mean(fotored_kmols_y[1957:1968])
mean(fotox_kmols_y[1957:1968])
mean(fotodem_kmols_y[1957:1968])
#FOTORIDUZIONE
fotored_1_s <-(fotored$Oxic1/(24*60*60))
fotox_1_s <-(out_ox_1_d/(24*60*60))
fotodem_1_s <-(fotodem$Oxic1/(24*60*60))
fotored_kmols_y_media<-tapply(fotored_kmols_y,rep(1:(length(fotored_kmols_y)/12), each = 12), mean)
mean(fotored_kmols_y_media)
#FOTOSSIDAZIONE
fotox_kmols_y_media<-tapply(fotox_kmols_y,rep(1:(length(fotox_kmols_y)/12), each = 12), mean)
fotox_kmols_y_media<-as.numeric(fotox_kmols_y_media); mean(fotox_kmols_y_media)
#FOTODEG
fotodem_kmols_y_media<-tapply(fotodem_kmols_y,rep(1:(length(fotodem_kmols_y)/12), each = 12), mean)
fotodem_kmols_y_media<-as.numeric(fotodem_kmols_y_media)
mean(fotodem_kmols_y_media)
output_kmol_y<-cbind(fotox_kmols_y, fotored_kmols_y,
fotodem_kmols_y,
Hg0_pM1, HgII_pM, mehg_pM, fotored_1_s,
ef_red, fotox_1_s, ef_ox,fotodem_1_s, ef_deg)
fotored_1_s_media<-tapply(fotored_1_s,rep(1:(length(fotored_1_s)/12), each = 12), mean)
fotored_1_s_media<-as.numeric(fotored_1_s_media)
ef_red_media <-tapply(ef_red,rep(1:(length(ef_red)/12), each = 12), mean)
ef_red_media<-as.numeric(ef_red_media)
fotox_1_s_media<-tapply(fotox_1_s,rep(1:(length(fotox_1_s)/12), each = 12), mean)
fotox_1_s_media<-as.numeric(fotox_1_s_media)
ef_ox_media <-tapply(ef_ox,rep(1:(length(ef_ox)/12), each = 12), mean)
ef_ox_media<-as.numeric(ef_ox_media)
fotodem_1_s_media<-tapply(fotodem_1_s,rep(1:(length(fotodem_1_s)/12), each = 12), mean)
fotodem_1_s_media<-as.numeric(fotodem_1_s_media)
ef_deg_media <-tapply(ef_deg,rep(1:(length(ef_deg)/12), each = 12), mean)
Hg0_pM_media1<-tapply(Hg0_pM1,rep(1:(length(Hg0_pM1)/12), each = 12), mean)
HgII_pM_media<-tapply(HgII_pM,rep(1:(length(HgII_pM)/12), each = 12), mean)
mehg_pM_media<-tapply(mehg_pM,rep(1:(length(mehg_pM)/12), each = 12), mean)
output_kmol_y_media<-cbind(fotox_kmols_y_media, fotored_kmols_y_media,
fotodem_kmols_y_media,
Hg0_pM_media1, HgII_pM_media, mehg_pM_media, fotored_1_s_media,
ef_red_media, fotox_1_s_media, ef_ox_media,fotodem_1_s_media, ef_deg_media)
write.csv(output_kmol_y, file="A_fotoreazioni1_2050.csv")
write.csv(output_kmol_y_media , file="A_fotoreazioni_media1_2050.csv")
#VOLATILIZZAZIONE
H<-7.1*10^-3 # Henry's Law constant
R<-8.206*10^-5 # Universal Gas constant 8.206??0-5 atm/molar-K
Tk<-288.15 # 15^C
divisore<-H/(R*Tk)
kvol_1_day_all<-evasion$Oxic1 # kvol ogni sim
tail(kvol_1_day_all)
kvol_1_day<-kvol_1_day_all #media kvol tutte sim
hg0_media_globale_pM<-Hg0_pM1
tail(hg0_media_globale_pM)
hg0_media_globale_ngL<-(hg0_media_globale_pM*200.59)/1000 #media Hg0 in ng/L (per conti)
hg0_g_m3<-hg0_media_globale_ngL/10^6; summary(hg0_g_m3) #media Hg0 in g/m3
skvol<-kvol_1_day*(hg0_g_m3 - (atm_hg0/divisore))
#g/m3 day
volat_g_y<-skvol*oxic_vol_m3*365;
volat1_kmol_y<-volat_g_y/(200.59*1000); plot(volat1_kmol_y, type="l")
Volat1_kmol_y_media<-tapply(volat1_kmol_y,rep(1:(length(volat1_kmol_y)/12), each = 12),
mean); Volat1_kmol_y_media<-as.numeric(Volat1_kmol_y_media)
#str(atm_hg0)
#vol_2013<-rep(Volat1_kmol_y_media[164],36)
#Volat1_kmol_y_media<-c(Volat1_kmol_y_media,vol_2013)
Volat1_kmol_y_media<-Volat1_kmol_y_media
plot(tail(volat1_kmol_y,24), type="l");
volat1_kmol_y_cumul<-cumsum(Volat1_kmol_y_media); volat1_kmol_y_cumul<-as.numeric(volat1_kmol_y_cumul)
plot(volat1_kmol_y_cumul, type="l")
volatile<-data.frame(Volat1_kmol_y_media, volat1_kmol_y_cumul); str(volatile)
write.csv(volatile, file="volat_media_e_cum_2050.csv")
write.csv(volat1_kmol_y, file="volat_kmoly_2050.csv", row.names=F)
mean(tail(volat1_kmol_y,12), type="l");
plot(head(hg0_g_m3,24), type="l", col="blue", lwd=2)
par(new=TRUE)
plot(head(skvol,24), type="l")
par(new=TRUE)
plot(head(kvol_1_day,24), type="l", col='red')
#VOLATILIZZAZIONE2
hg0_res<- Hg0_pM1*oxic_vol_m3*1000
vvol_pM_day<-kvol_1_day*hg0_res
vvol_kmol_y<-vvol_pM_day*365/10^15
vvol_kmol_y_media<-tapply(vvol_kmol_y,rep(1:(length(vvol_kmol_y)/12), each = 12),
mean); vvol_kmol_y_media<-as.numeric(vvol_kmol_y)
plot(tail(vvol_kmol_y_media,24), type="l");
plot(vvol_kmol_y_media, type="l");
mean(tail(Volat1_kmol_y_media,24));mean(tail(vvol_kmol_y_media,24))