-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquaternion.c++
342 lines (294 loc) · 7.75 KB
/
quaternion.c++
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
//****************************************************
//* quaternion.c++ *
//* *
//* Implementaion for a generalized quaternion class *
//* *
//* Written 1.25.00 by Angela Bennett *
//****************************************************
#include "quaternion.h"
//Quaternion
// -default constructor
// -creates a new quaternion with all parts equal to zero
template<class _Tp>
Quaternion<_Tp>::Quaternion(void)
{
x = 0;
y = 0;
z = 0;
w = 0;
}
//Quaternion
// -constructor
// -parametes : x, y, z, w elements of the quaternion
// -creates a new quaternion based on the elements passed in
template<class _Tp>
Quaternion<_Tp>::Quaternion(_Tp wi, _Tp xi, _Tp yi, _Tp zi)
{
w = wi;
x = xi;
y = yi;
z = zi;
}
//Quaternion
// -constructor
// -parameters : vector/array of four elements
// -creates a new quaternion based on the elements passed in
template<class _Tp>
Quaternion<_Tp>::Quaternion(_Tp v[4])
{
w = v[0];
x = v[1];
y = v[2];
z = v[3];
}
//Quaternion
// -copy constructor
// -parameters : const quaternion q
// -creates a new quaternion based on the quaternion passed in
template<class _Tp>
Quaternion<_Tp>::Quaternion(const Quaternion<_Tp>& q)
{
w = q.w;
x = q.x;
y = q.y;
z = q.z;
}
#ifdef SHOEMAKE
//Quaternion
// -constructor
// -parameters : yaw, pitch, and roll of an Euler angle
// -creates a new quaternion based on the Euler elements passed in
// -used with Shoemakes code
template<class _Tp>
Quaternion<_Tp>::Quaternion(_Tp e[3], int order)
{
EulerAngles ea;
ea.x = e[0];
ea.y = e[1];
ea.z = e[2];
ea.w = order;
Quat q = Eul_ToQuat(ea);
x = q.x;
y = q.y;
z = q.z;
w = q.w;
}
#endif
//~Quaternion
// -destructor
// -deleted dynamically allocated memory
template<class _Tp>
Quaternion<_Tp>::~Quaternion()
{
}
//operator=
// -parameters : q1 - Quaternion object
// -return value : Quaternion
// -when called on quaternion q2 sets q2 to be an object of q3
template<class _Tp>
Quaternion<_Tp> Quaternion<_Tp>::operator = (const Quaternion<_Tp>& q)
{
w = q.w;
x = q.x;
y = q.y;
z = q.z;
return (*this);
}
//operator+
// -parameters : q1 - Quaternion object
// -return value : Quaternion
// -when called on quaternion q2 adds q1 + q2 and returns the sum in a new quaternion
template<class _Tp>
Quaternion<_Tp> Quaternion<_Tp>::operator + (const Quaternion<_Tp>& q)
{
return Quaternion(w+q.w, x+q.x, y+q.y, z+q.z);
}
//operator-
// -parameters : q1- Quaternion object
// -return values : Quaternion
// -when called on q1 subtracts q1 - q2 and returns the difference as a new quaternion
template<class _Tp>
Quaternion<_Tp> Quaternion<_Tp>::operator - (const Quaternion<_Tp>& q)
{
return Quaternion(w-q.w, x-q.x, y-q.y, z-q.z);
}
//operator*
// -parameters : q1 - Quaternion object
// -return values : Quaternion
// -when called on a quaternion q2, multiplies q2 *q1 and returns the product in a new quaternion
template<class _Tp>
Quaternion<_Tp> Quaternion<_Tp>::operator * (const Quaternion<_Tp>& q)
{
return Quaternion(
w*q.w - x*q.x - y*q.y - z*q.z,
w*q.x + x*q.w + y*q.z - z*q.y,
w*q.y + y*q.w + z*q.x - x*q.z,
w*q.z + z*q.w + x*q.y - y*q.x);
}
//operator/
// -parameters : q1 and q2- Quaternion objects
// -return values : Quaternion
// -divide q1 by q2 and returns the quotient q1
template<class _Tp>
Quaternion<_Tp> Quaternion<_Tp>::operator / (Quaternion<_Tp>& q)
{
return ((*this) * (q.inverse()));
}
//operator+=
// -parameters : q1- Quaternion object
// -return values : Quaternion
// -when called on quaternion q3, adds q1 and q3 and returns the sum as q3
template<class _Tp>
Quaternion<_Tp>& Quaternion<_Tp>::operator += (const Quaternion<_Tp>& q)
{
w += q.w;
x += q.x;
y += q.y;
z += q.z;
return (*this);
}
//operator-=
// -parameters : q1- Quaternion object
// -return values : Quaternion
// -when called on quaternion q3, subtracts q1 from q3 and returns the difference as q3
template<class _Tp>
Quaternion<_Tp>& Quaternion<_Tp>::operator -= (const Quaternion<_Tp>& q)
{
w -= q.w;
x -= q.x;
y -= q.y;
z -= q.z;
return (*this);
}
//operator*=
// -parameters : q1- Quaternion object
// -return values : Quaternion
// -when called on quaternion q3, multiplies q3 by q1 and returns the product as q3
template<class _Tp>
Quaternion<_Tp>& Quaternion<_Tp>::operator *= (const Quaternion<_Tp>& q)
{
_Tp w_val = w*q.w - x*q.x - y*q.y - z*q.z;
_Tp x_val = w*q.x + x*q.w + y*q.z - z*q.y;
_Tp y_val = w*q.y + y*q.w + z*q.x - x*q.z;
_Tp z_val = w*q.z + z*q.w + x*q.y - y*q.x;
w = w_val;
x = x_val;
y = y_val;
z = z_val;
return (*this);
}
//operator/=
// -parameters : q1- Quaternion object
// -return values : quaternion
// -when called on quaternion q3, divides q3 by q1 and returns the quotient as q3
template<class _Tp>
Quaternion<_Tp>& Quaternion<_Tp>::operator /= (Quaternion<_Tp>& q)
{
(*this) = (*this)*q.inverse();
return (*this);
}
//operator!=
// -parameters : q1 and q2- Quaternion objects
// -return value : bool
// -determines if q1 and q2 are not equal
template<class _Tp>
bool Quaternion<_Tp>::operator != (const Quaternion<_Tp>& q)
{
return (w!=q.w || x!=q.x || y!=q.y || z!=q.z) ? true : false;
}
//operator==
// -parameters : q1 and q2- Quaternion objects
// -return value : bool
// -determines if q1 and q2 are equal
template<class _Tp>
bool Quaternion<_Tp>::operator == (const Quaternion<_Tp>& q)
{
return (w==q.w && x==q.x && y==q.y && z==q.z) ? true : false;
}
//norm
// -parameters : none
// -return value : _Tp
// -when called on a quaternion object q, returns the norm of q
template<class _Tp>
_Tp Quaternion<_Tp>::norm()
{
return (w*w + x*x + y*y + z*z);
}
//magnitude
// -parameters : none
// -return value : _Tp
// -when called on a quaternion object q, returns the magnitude q
template<class _Tp>
_Tp Quaternion<_Tp>::magnitude()
{
return sqrt(norm());
}
//scale
// -parameters : s- a value to scale q1 by
// -return value: quaternion
// -returns the original quaternion with each part, w,x,y,z, multiplied by some scalar s
template<class _Tp>
Quaternion<_Tp> Quaternion<_Tp>::scale(_Tp s)
{
return Quaternion(w*s, x*s, y*s, z*s);
}
// -parameters : none
// -return value : quaternion
// -when called on a quaternion object q, returns the inverse of q
template<class _Tp>
Quaternion<_Tp> Quaternion<_Tp>::inverse()
{
return conjugate().scale(1/norm());
}
//conjugate
// -parameters : none
// -return value : quaternion
// -when called on a quaternion object q, returns the conjugate of q
template<class _Tp>
Quaternion<_Tp> Quaternion<_Tp>::conjugate()
{
return Quaternion(w, -x, -y, -z);
}
//UnitQuaternion
// -parameters : none
// -return value : quaternion
// -when called on quaterion q, takes q and returns the unit quaternion of q
template<class _Tp>
Quaternion<_Tp> Quaternion<_Tp>::UnitQuaternion()
{
return (*this).scale(1/(*this).magnitude());
}
// -parameters : vector of type _Tp
// -return value : void
// -when given a 3D vector, v, rotates v by this quaternion
template<class _Tp>
void Quaternion<_Tp>::QuatRotation(_Tp v[3])
{
Quaternion <_Tp> qv(0, v[0], v[1], v[2]);
Quaternion <_Tp> qm = (*this) * qv * (*this).inverse();
/* QUESTION: (*this) has to be normalized?? */
v[0] = qm.x;
v[1] = qm.y;
v[2] = qm.z;
}
#ifdef SHOEMAKE
// -parameters : integer order- which will specify the order of the rotation, q- quaternion
// -return value : Euler angle
// -
template<class _Tp>
void Quaternion<_Tp>::toEuler(_Tp e[3], int order)
{
Quat q;
q.w = 0;
q.x = e[0];
q.y = e[1];
q.z = e[2];
EulerAngles ea = Eul_FromQuat(q, order);
w = ea.w;
x = ea.x;
y = ea.y;
z = ea.z;
}
#endif
template class Quaternion <double>;
template class Quaternion <float>;