-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathbaseline_gtsam.py
217 lines (180 loc) · 7.65 KB
/
baseline_gtsam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import gtsam
import open3d as o3d
import numpy as np
def vector6(x, y, z, a, b, c):
"""Create 6d double numpy array."""
return np.array([x, y, z, a, b, c], dtype=float)
# Convert GTSAM Pose3 objects to list of translations for plotting
def extract_translations_from_gtsam_values(poses_values):
return [(poses_values.atPose3(i).translation()) for i in range(poses_values.size())]
# Define the plot function (from your reference)
def plot_two_poses_with_edges_open3d(
initial_poses_list, optimized_poses_list, edges, skip=1
):
"""
Visualize two lists of Pose objects as point clouds using Open3D, with edges between specific poses
in the initial_poses_list, and include XYZ axes.
Parameters:
initial_poses_list (list of Pose): First list of Pose objects (initial poses).
optimized_poses_list (list of Pose): Second list of Pose objects (optimized poses).
edges (list of dict): List of edges, where each edge contains "i", "j" for the indices and
a "measurement" for the pose transformation between them.
skip (int, optional): Plot every 'skip' poses (default is 1, which plots all poses).
"""
# Helper function to convert pose list to Open3D point cloud
def poses_to_point_cloud(pose_list, color, skip=1):
points = [pose for idx, pose in enumerate(pose_list) if idx % skip == 0]
points_np = np.array(points)
# Create Open3D point cloud
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points_np)
# Set point colors
colors_np = np.tile(color, (points_np.shape[0], 1))
pcd.colors = o3d.utility.Vector3dVector(colors_np)
return pcd
# Create two point clouds with different colors
pcd_initial = poses_to_point_cloud(
initial_poses_list, color=[1, 0, 0], skip=skip
) # Red for initial poses
pcd_optimized = poses_to_point_cloud(
optimized_poses_list, color=[0, 1, 0], skip=skip
) # Green for optimized poses
# Create lines for edges between poses in the initial_poses_list
lines = []
line_colors = []
for edge in edges:
from_idx = edge["i"]
to_idx = edge["j"]
# Only plot edges if they exist in the range of the initial pose list
if from_idx < len(initial_poses_list) and to_idx < len(initial_poses_list):
# Line connects the from and to poses
line = [from_idx, to_idx]
lines.append(line)
line_colors.append([0, 0, 1]) # Blue color for the lines
# Create Open3D LineSet for the edges in the initial poses
if lines:
# Use the points from the initial poses as vertices
line_set = o3d.geometry.LineSet()
points = np.array(optimized_poses_list) # Points from optimized poses
line_set.points = o3d.utility.Vector3dVector(points)
line_set.lines = o3d.utility.Vector2iVector(lines)
line_set.colors = o3d.utility.Vector3dVector(line_colors)
else:
line_set = None
# Create XYZ axes
axes = o3d.geometry.TriangleMesh.create_coordinate_frame(size=1.0, origin=[0, 0, 0])
# Visualize both point clouds, lines, and axes
geometries = [pcd_initial, pcd_optimized, axes]
if line_set:
geometries.append(line_set)
o3d.visualization.draw_geometries(
geometries,
zoom=0.8,
front=[-0.4999, -0.1659, -0.8499],
lookat=[0, 0, 0],
up=[0.1204, -0.9852, 0.1215],
)
# Helper function to read .g2o file
def read_g2o_file(file_path):
poses = []
edges = []
with open(file_path, "r") as f:
for line in f:
data = line.strip().split()
if data[0] == "VERTEX_SE3:QUAT":
# Parse pose (node)
node_id = int(data[1])
x, y, z = float(data[2]), float(data[3]), float(data[4])
qx, qy, qz, qw = (
float(data[5]),
float(data[6]),
float(data[7]),
float(data[8]),
)
pose = gtsam.Pose3(
gtsam.Rot3.Quaternion(qw, qx, qy, qz), gtsam.Point3(x, y, z)
)
poses.append((node_id, pose))
elif data[0] == "EDGE_SE3:QUAT":
# Parse edge (constraint)
id_from = int(data[1])
id_to = int(data[2])
x, y, z = float(data[3]), float(data[4]), float(data[5])
qx, qy, qz, qw = (
float(data[6]),
float(data[7]),
float(data[8]),
float(data[9]),
)
# Parse the upper triangular information matrix
upper_triangular = np.array([float(i) for i in data[10:]])
# Reshape to the upper triangular form (size 6x6)
upper_triangular_matrix = np.zeros((6, 6))
upper_triangular_matrix[np.triu_indices(6)] = upper_triangular
# Make it symmetric
information_matrix = (
upper_triangular_matrix
+ upper_triangular_matrix.T
- np.diag(upper_triangular_matrix.diagonal())
)
edge_pose = gtsam.Pose3(
gtsam.Rot3.Quaternion(qw, qx, qy, qz), gtsam.Point3(x, y, z)
)
edges.append((id_from, id_to, edge_pose, information_matrix))
return poses, edges
# Load the g2o file
dataset_names = [
"grid3D.g2o",
"torus3D.g2o",
"sphere_bignoise_vertex3.g2o",
"rim.g2o",
"cubicle.g2o",
"parking-garage.g2o",
]
dataset_name = dataset_names[-2]
initial_poses, edges = read_g2o_file(f"data/{dataset_name}")
# Create a NonlinearFactorGraph
graph = gtsam.NonlinearFactorGraph()
# Add the prior to the first node
prior_noise = gtsam.noiseModel.Diagonal.Variances(
vector6(1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4)
)
first_pose = initial_poses[0][1]
graph.add(gtsam.PriorFactorPose3(0, first_pose, prior_noise))
# Add edges to graph with or without robust noise model
for id_from, id_to, edge_pose, _ in edges:
odomModel = gtsam.noiseModel.Diagonal.Variances(
vector6(1e-2, 1e-2, 1e-2, 1e-2, 1e-2, 1e-2)
)
loopModel = gtsam.noiseModel.Diagonal.Variances(
vector6(0.5, 0.5, 0.5, 0.5, 0.5, 0.5)
)
# Add robust noise model for non-consecutive edges
if abs(id_from - id_to) != 1:
robust_noise_model = gtsam.noiseModel.Robust.Create(
gtsam.noiseModel.mEstimator.Cauchy.Create(1.0), loopModel
)
factor = gtsam.BetweenFactorPose3(id_from, id_to, edge_pose, robust_noise_model)
else:
factor = gtsam.BetweenFactorPose3(id_from, id_to, edge_pose, odomModel)
graph.add(factor)
# Initial estimates (optional: use poses from .g2o as initial guess)
initial_estimate = gtsam.Values()
for node_id, pose in initial_poses:
initial_estimate.insert(node_id, pose)
# Create Levenberg-Marquardt optimizer parameters
params = gtsam.LevenbergMarquardtParams()
params.setVerbosity("TERMINATION")
params.setVerbosityLM("SUMMARY")
params.setMaxIterations(500) # Set maximum number of iterations to 500
# Initialize optimizer with verbose output
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial_estimate, params)
result = optimizer.optimize()
# Visualize the initial and optimized poses
edges = [
{"i": id_from, "j": id_to, "measurement": edge_pose}
for id_from, id_to, edge_pose, _ in edges
]
initial_poses_xyz = [pose.translation() for _, pose in initial_poses]
optimized_poses_xyz = extract_translations_from_gtsam_values(result)
plot_two_poses_with_edges_open3d(initial_poses_xyz, optimized_poses_xyz, edges)