forked from KHUDA-NLP/SOL._.T
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
44 lines (35 loc) · 1.4 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import streamlit as st
from utils import print_messages
from langchain_core.messages import ChatMessage
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate # MessagePlaceHolder
from langchain_core.output_parsers import StrOutputParser
import os
from dotenv import load_dotenv
st.set_page_config(
page_title = "연애 솔루션 챗봇 Sol-T",
page_icon = "SOL-T💞")
st.title("연애 솔루션 챗봇 SOL-T💞")
# API key 설정
load_dotenv()
os.environ.get("OPENAI_API_KEY")
if "messages" not in st.session_state:
st.session_state["messages"] = []
# 이전 대화 기록 출력해주는 함수.
print_messages()
if user_input := st.chat_input("어떤 것이 궁금하신가요?"):
# 사용자 입력
st.chat_message("user").write(f"{user_input}")
st.session_state["messages"].append(ChatMessage(role = "user", content = user_input))
# LLM 답변 생성
prompt = ChatPromptTemplate.from_template(
"""질문에 대해 간결하지만 최대한 친절하게 답변하라.
{question}
""")
chain = prompt | ChatOpenAI() | StrOutputParser()
msg = chain.invoke({"question" : user_input})
# AI 답변
with st.chat_message("assistant"):
# msg = f" '아!! {user_input}' 이렇게 답변하셨군요"
st.write(msg)
st.session_state["messages"].append(ChatMessage(role = "assistant", content = msg))