-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsp_kmeans.m
122 lines (107 loc) · 3.67 KB
/
sp_kmeans.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
function [centres, options, post, errlog] = sp_kmeans(centres, data, options)
% KMEANS Trains a k means cluster model.
% Adapted from Netlab neural network software:
% http://www.ncrg.aston.ac.uk/netlab/index.php
%
% Description
% CENTRES = KMEANS(CENTRES, DATA, OPTIONS) uses the batch K-means
% algorithm to set the centres of a cluster model. The matrix DATA
% represents the data which is being clustered, with each row
% corresponding to a vector. The sum of squares error function is used.
% The point at which a local minimum is achieved is returned as
% CENTRES. The error value at that point is returned in OPTIONS(8).
%
% [CENTRES, OPTIONS, POST, ERRLOG] = KMEANS(CENTRES, DATA, OPTIONS)
% also returns the cluster number (in a one-of-N encoding) for each
% data point in POST and a log of the error values after each cycle in
% ERRLOG. The optional parameters have the following
% interpretations.
%
% OPTIONS(1) is set to 1 to display error values; also logs error
% values in the return argument ERRLOG. If OPTIONS(1) is set to 0, then
% only warning messages are displayed. If OPTIONS(1) is -1, then
% nothing is displayed.
%
% OPTIONS(2) is a measure of the absolute precision required for the
% value of CENTRES at the solution. If the absolute difference between
% the values of CENTRES between two successive steps is less than
% OPTIONS(2), then this condition is satisfied.
%
% OPTIONS(3) is a measure of the precision required of the error
% function at the solution. If the absolute difference between the
% error functions between two successive steps is less than OPTIONS(3),
% then this condition is satisfied. Both this and the previous
% condition must be satisfied for termination.
%
% OPTIONS(14) is the maximum number of iterations; default 100.
%
% Copyright (c) Ian T Nabney (1996-2001)
[ndata, data_dim] = size(data);
[ncentres, dim] = size(centres);
if dim ~= data_dim
error('Data dimension does not match dimension of centres')
end
if (ncentres > ndata)
error('More centres than data')
end
% Sort out the options
if (options(14))
niters = options(14);
else
niters = 100;
end
store = 0;
if (nargout > 3)
store = 1;
errlog = zeros(1, niters);
end
% Check if centres and posteriors need to be initialised from data
if (options(5) == 1)
% Do the initialisation
perm = randperm(ndata);
perm = perm(1:ncentres);
% Assign first ncentres (permuted) data points as centres
centres = data(perm, :);
end
% Matrix to make unit vectors easy to construct
id = eye(ncentres);
% Main loop of algorithm
for n = 1:niters
% Save old centres to check for termination
old_centres = centres;
% Calculate posteriors based on existing centres
d2 = sp_dist2(data, centres);
% Assign each point to nearest centre
[minvals, index] = min(d2', [], 1);
post = id(index,:);
num_points = sum(post, 1);
% Adjust the centres based on new posteriors
for j = 1:ncentres
if (num_points(j) > 0)
centres(j,:) = sum(data(find(post(:,j)),:), 1)/num_points(j);
end
end
% Error value is total squared distance from cluster centres
e = sum(minvals);
if store
errlog(n) = e;
end
if options(1) > 0
fprintf(1, 'Cycle %4d Error %11.6f\n', n, e);
end
if n > 1
% Test for termination
if max(max(abs(centres - old_centres))) < options(2) & ...
abs(old_e - e) < options(3)
options(8) = e;
return;
end
end
old_e = e;
end
% If we get here, then we haven't terminated in the given number of
% iterations.
options(8) = e;
if (options(1) >= 0)
disp('Warning: Maximum number of iterations has been exceeded');
end