-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
44 lines (36 loc) · 1.76 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
class Config():
def __init__(self):
##################################################
# Training Config
##################################################
self.GPU = '0, 1' # GPU
self.workers = 4 # number of Dataloader workers
self.epochs = 40 # number of epochs
self.batch_size = 16 # batch size
self.learning_rate = 1e-3 # initial learning rate
##################################################
# Model Config
##################################################
self.image_size = (386, 386) # size of training images
self.net = 'inception_mixed_6e' # feature extractor
self.num_attentions = 32 # number of attention maps
self.beta = 5e-2 # param for update feature centers
##################################################
# Dataset/Path Config
##################################################
# saving directory of .ckpt models
self.save_dir = './weights/'
self.model_name = 'model_{}_{}.ckpt'.format(self.net, self.image_size[0])
self.log_name = 'train.log'
# checkpoint model for resume training
self.ckpt = False
#self.ckpt = self.save_dir + self.model_name
##################################################
# Eval Config
##################################################
self.visualize = False
self.eval_ckpt = self.save_dir + self.model_name
self.eval_savepath = './result/'
def refresh(self):
self.model_name = 'model_{}_{}.ckpt'.format(self.net, self.image_size[0])
self.eval_ckpt = self.save_dir + self.model_name