forked from yunjey/stargan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader_celeba.py
201 lines (168 loc) · 7.56 KB
/
data_loader_celeba.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
"""Loader and utilities to work with the CelebA dataset
TODO exchange imageA and imageP and learn from the new pair, in this case we can
TODO help to prevent learning things that are dependant on the images themselves
"""
from torchvision import transforms as T
from PIL import Image
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from os import listdir, walk, path
import random
from random import shuffle
from torchvision import transforms
class CelebADataset(Dataset):
def __init__(self, image_path, metadata_path, transform=lambda x:x,
validation=(100, 25), val_samples=None):
self.image_path = image_path
self.metadata_path = metadata_path
self.transform = transform
self.validation = validation
self.val_samples = val_samples
print("Preprocessing dataset...")
self.preprocess_dataset(validation)
print("done")
def compute_validation_samples(self, pictures, validation=(None, None)):
"""Produces the validation dataset
Args:
pictures: the list of all the pictures in the dataset
validation: tuple(#input, #cond) or tuple([input], [cond])
Returns: the restricted set of pictures and the validation dataset
object
"""
shuffle(pictures)
if type(validation[0]) == int and type(validation[1]) == int:
num_validation = validation[0] + validation[1]
train_pictures = pictures[:-num_validation]
val_pictures = pictures[-num_validation:]
val_input = val_pictures[:validation[0]]
val_cond = val_pictures[validation[0]:]
elif type(validation[0]) == list and type(validation[1]) == list:
val_input = validation[0]
val_cond = validation[1]
train_pictures = set(pictures) - set(val_input) - set(val_cond)
train_pictures = list(train_pictures)
else:
raise TypeError("validation must be an iterable of length=2 "
"where both elements are ints or lists")
return train_pictures, val_input, val_cond
def get_validation_dataset(self):
"""Returns the loader for the validation images
Returns: loader for validation images
"""
return ValidationDataset(self.val_input,
self.val_cond,
self.transform,
self.image_path)
def preprocess_dataset(self, validation):
"""Reads the dataset and creates the following variables
self.image_ids: list of all ids
self.pictures: list of the names of all pictures
self.image_id2name: dict id -> list of picture names
self.image_name2id: dict name of picture -> id
self.ids_multiple: list of all ids that have more than one picture
self.pictures_multiple: list of pictures whose id has several pictures
Returns: None
"""
self.pictures, self.val_input,self.val_cond = \
self.compute_validation_samples(listdir(self.image_path), validation)
pictures_set = set(self.pictures)
shuffle(self.pictures)
self.image_id2name, self.image_name2id = {}, {}
self.image_ids = set()
# read id metadata
with open(self.metadata_path, 'r') as f:
for line in f:
file_name, id = line.strip().split(' ')
id = int(id)
self.image_ids.add(id)
if file_name in pictures_set:
self.image_name2id[file_name] = id
if id not in self.image_id2name:
self.image_id2name[id] = []
self.image_id2name[id].append(file_name)
self.ids_multiple = \
list(filter(lambda x: len(self.image_id2name[x]) > 1, self.image_ids))
ids_multiple_set = set(self.ids_multiple)
self.pictures_multiple = \
list(filter(lambda x: self.image_name2id[x] in ids_multiple_set,
self.pictures))
def __len__(self):
return len(self.pictures_multiple)
def __getitem__(self, item):
# choose an image by name
imageA_name = self.pictures_multiple[item]
imageA = Image.open(path.join(self.image_path, imageA_name))
idA = self.image_name2id[imageA_name]
pictureP = random.choice(list(
set(self.image_id2name[idA]) - {imageA_name}
))
# choose a random negative image, ensure that it's id is not idA
while True:
#FIXME doing choice on a list can be time consuming, better dict?
pictureN = random.choice(self.pictures)
if not self.image_name2id[pictureN] == idA: break
imageP = Image.open(path.join(self.image_path, pictureP))
imageN = Image.open(path.join(self.image_path, pictureN))
# transform = transforms.Compose([
# transforms.CenterCrop(170),
# transforms.Resize(128, interpolation=Image.ANTIALIAS),
# transforms.RandomHorizontalFlip()])
# transform(imageA).show()
# transform(imageP).show()
# transform(imageN).show()
return self.transform(imageA), \
self.transform(imageP), \
self.transform(imageN)
class ValidationDataset(Dataset):
"""Produces validation samples that are not part of the training set
"""
def __init__(self, input_samples, conditioning_samples, transform,
image_path):
self.input_samples = input_samples
self.conditioning_samples = conditioning_samples
new_transform = [t for t in transform.transforms if type(t)
is not transforms.RandomHorizontalFlip]
self.transform = transforms.Compose(new_transform)
self.image_path = image_path
def __len__(self):
return len(self.input_samples) * len(self.conditioning_samples)
def __getitem__(self, item):
imageA = Image.open(path.join(self.image_path,
self.input_samples[item // len(
self.conditioning_samples)]))
imageB = Image.open(path.join(self.image_path,
self.conditioning_samples[item % len(
self.conditioning_samples)]))
return self.transform(imageA), self.transform(imageB)
def get_loader(image_dir, metadata_path, crop_size, image_size,
batch_size=4, mode='train', validation=None, val_samples=None):
"""Returns the reader for the CelebA dataset
Args:
image_dir:
metadata_path:
crop_size:
image_size:
batch_size:
mode:
validation:
val_samples:
Returns:
"""
transform = []
if mode == 'train':
transform.append(T.RandomHorizontalFlip())
transform.append(T.CenterCrop(crop_size))
transform.append(T.Resize(image_size, interpolation=Image.ANTIALIAS))
transform.append(T.ToTensor())
transform.append(T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))
transform = T.Compose(transform)
dataset = CelebADataset(image_dir,
metadata_path,
transform=transform,
validation=validation,
val_samples=val_samples)
shuffle = True if mode == 'train' else False
data_loader = DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=shuffle)
return data_loader