forked from digitalmoleculardesign/bill_goddard_chem_120
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap04.tex
3091 lines (2910 loc) · 109 KB
/
chap04.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Electron Spin and the Pauli Principle}
\label{chap04}
\section{Introduction}
In previous chapters, we considered one-electron and two-electron
systems. In these cases, the ground state is obtained by starting with
the Hamiltonian $H(1)$ or $H(2)$, and solving for the wavefunction
yielding the lowest possible energy. This is a very reasonable
procedure; however, it does not work for more than two electrons. For
many-electron systems, the wavefunction leading to the lowest energy,
is not allowed. The fundamental reasons for this are obscure;
however, there is a simple principle that correctly tells us which
wavefunctions are allowed. This principle is called the \emph{Pauli
principle} and is one of the two major subjects of this chapter.
In previous chapters we have considered the electron as an entity
localized at a point, and having only a mass and a charge. However,
there is internal structure to the electron resulting in a net angular
momentum (spin) for the electron. Thus, the total wavefunction for an
electron can be written as
\begin{equation}
\psi ( {\bf r} , \sigma ) = \varphi ({\bf r}) \chi ( \sigma ) ,
\end{equation}
where $\psi$ is a spin orbital, $\varphi$ is a spatial orbital, and $\chi$
is a spin function ($\alpha$ or $\beta$ corresponding to the two
components for spin 1/2). Without magnetic fields, the
Hamiltonian is approximately independent of electron spin. Hence, spin
does not enter directly into determining the bond strengths, ordering of
state, etc. However, in collusion with the Pauli principle, the spin
plays a crucial role in chemistry, eliminating many eigenstate of $H$
having energies far below the actual ground state of the molecule. For
atoms having $Z > 54$, Xe, effects involving spin are quite important in
bonding, and for atoms having $Z > 36$, Kr, the effects are moderately
important, we shall ignore such complications.
The simplest wavefunction satisfying the Pauli principle is the Slater
determinant wavefunction
\begin{equation}
{\cal A} \Psi = {\cal A} \psi_a \psi_b \psi_c = \left|
\matrix{\psi_a(1) & \psi_b(1) & \cdots \cr
\psi_a(2) & \psi_b(2) &\cr
\vdots & & \ddots\cr}
\right| ,
\end{equation}
where ${\cal A}$ is the antisymmetrizer, or determinant operator. In the
case that two of the spin orbitals of a Slater determinant are equal, we
obtain ${\cal A} \Psi = 0$, and the spin orbitals of a Slater determinant
can be taken as orthonormal
\begin{equation}
\langle \psi_i | \psi_j \rangle = \delta_{ij}
\end{equation}
with no affect on the energy or properties of the wavefunction. We will find
that the Slater determinant is invariant under recombinations of these
spin orbitals.
The energy of the Slater determinant wavefunction is
\begin{equation}
E = \sum^N_i \langle i | h | i \rangle + \sum^N_{i>j} \left(
J_{ij} - K_{ij} \right) ,
\end{equation}
where $h$ is the one-electron operator, and ${\cal G}_{ij}$ and ${\cal
K}_{jj}$ are Coulomb and exchange integrals over spin orbitals.
Factoring the spin orbitals into spatial and spin functions leads to
the following important wavefunctions and energies. Here, $J_{ij}$
and $K_{ij}$ are integrals over spatial functions only.
For closed-shell Hartree-Fock
\begin{equation}
{\cal A} ( \varphi_1 \alpha ) ( \varphi_1 \beta ) \cdots (
\varphi_m \alpha ) ( \varphi_m \beta ) ,
\end{equation}
where $m = N/2$
\begin{equation}
E = 2 \sum^m_{i=1} \langle i | h | i \rangle + \sum^m_{ij} \left( e
J_{ij} - K_{ij} \right) .
\end{equation}
For high-spin multiplet
\begin{equation}
{\cal A} ( \varphi_1 \alpha ) \cdots ( \varphi_n \alpha )
\end{equation}
\begin{equation}
E = \sum^n_i \langle i | h | i \rangle + \sum^n_{i>j} \left( J_{ij} -
K_{ij} \right).
\end{equation}
Finally, for intermediate spin
\begin{equation}
{\cal A} ( \varphi_1 \alpha ) ( \varphi_1 \beta ) \cdots (
\varphi_m \alpha \varphi_m \beta ) ( \varphi_{m+1} \alpha) \cdots
( \varphi_n \alpha ),
\end{equation}
with the energy given in Section \ref{chap4-sect4.4}.
\section{Electron Spin, One Electron}
\subsection{Spin Orbitals}
\begin{figure}
\includegraphics[scale=0.75]{fig4-1}
\caption{}
\label{fig4-01}
\end{figure}
So far, in this course, we have considered the electron to be a point particle
having mass $m$ and charge $-e$. Thus, we described the electron wavefunction as
\begin{equation}
\varphi ( {\bf r} ) = \varphi ( x , y , z ) ,
\end{equation}
presuming that only the position of the electron need be given.
Imagine now that the electron has some finite size, say a small
sphere. Then we would need to specify, not only the position $x$, $y$,
and $z$ of the electron, but also the orientation of the sphere, say
$\sigma_v$, $\sigma_{\varphi}$, as indicated in Figure \ref{fig4-01}.
Thus, we would have to specify five coordinates in order to completely
describe the total wavefunction,
\begin{equation}
\psi ( x , y , z , \sigma_v , \sigma_{\varphi} ) .
\end{equation}
If the orientation is independent of the absolute position, the
wavefunction will factor into two parts,
\begin{equation}
\varphi ( x , y , z , \sigma_v , \sigma_{\varphi} ) = \varphi ( x , y ,
z ) \chi ( \sigma_v , \sigma_{\varphi} ) = \varphi ( {\bf r} ) \chi (
\sigma )_ ,
\end{equation}
where, as usual, $\varphi$ is the probability amplitude of finding the
electron at some point $x, y, z$. Here, ${\bf r}$ is symbolic for the
collection of coordinates $ x , y , z$, and $\sigma$ is symbolic for
the collection of coordinates $\sigma_v$, $\sigma_{\varphi}$. The
other function, $\chi$ gives the probability amplitude of finding some
particular orientation $\sigma_v$, $\sigma_{\varphi}$ on the electron.
These orientation coordinates $\sigma_v$, $\sigma_{\varphi}$ would be
called \emph{internal coordinates}.
Imagine now that the electron is spinning about its axis with some angular
momentum $s$. Since the electron is charged, the spin would lead to a
magnetic moment $\mu = \gamma s$. This magnetic momentum could be detected
by its interaction with an external magnetic field, say in the $z$
direction,
\begin{equation}
\Delta E = - \mu_z B_z = - \gamma B_z s_z .
\end{equation}
Classically, $s_z$ could have any value from $s_z = +|s|$ to $s_z = -
|s|$, where $|s|$ is the total angular
momentum. Experimentally, the electron leads to only two values of $s_z$,
\begin{equation}
s_z = + {1 \over 2} \hbar
\label{chap4-eqno1}
\end{equation}
\begin{equation}
s_z = - {1 \over 2} \hbar
\label{chap4-eqno2}
\end{equation}
This description of the electron as a finite size charged sphere
should not be taken literally. It is only to indicate how one might
think of the internal coordinates. However, it is the case that the
electron does have an internal angular momentum (called \emph{spin})
which leads to a magnetic moment that can interact with external
magnetic fields. There are only two possible states for the internal
coordinates of the electron, up-spin (\ref{chap4-eqno1}), denoted as
$\alpha ( \sigma )$ and down-spin (\ref{chap4-eqno2}), denoted as
$\beta ( \sigma )$. These two states, $\alpha$ and $\beta$ are
orthogonal, and normalized so that we write
\begin{equation}
\langle \alpha | \beta \rangle = 0
\end{equation}
\begin{equation}
\langle \alpha | \alpha \rangle = 1
\end{equation}
\begin{equation}
\langle \beta | \beta \rangle = 1
\end{equation}
where the integration is over the internal (spin) coordiantes.
Consider now, the product of spatial functions, hereafter called orbitals,
e.g., $\varphi_i$ and $\varphi_j$, and spin functions, e.g., $\alpha$
and $\beta$, to form spin orbitals such as
\begin{eqnarray}
\psi_{i \alpha} ( {\bf r} , \sigma ) &=& \varphi_i ( {\bf r} ) \alpha (
\sigma )\cr
\psi_{i \beta } &=& \varphi_i\beta\cr
\psi_{j \alpha} &=& \varphi_j\alpha\cr
\psi_{j \beta} &=& \varphi_j\beta
\end{eqnarray}
Then,
\begin{equation}
\langle \psi_{i \alpha} | \psi_{j \alpha} \rangle = \langle \varphi_i |
\varphi_j \rangle \langle \alpha | \alpha \rangle = \langle \varphi_i |
\varphi_j \rangle
\end{equation}
and
\begin{equation}
\langle \psi_{i \alpha} | \psi_{j \beta} \rangle = \langle \varphi_i |
\varphi_j \rangle \langle \alpha | \beta \rangle = 0 .
\end{equation}
Thus, states with different spin are always orthogonal, independent of the
relation between $\varphi_i$ and $\varphi_j$. States with the same spin are
orthonormal if the $\varphi_i$ are orthonormal.
Now consider the $\{ \varphi_i \}$ to be eigenstates of the Hamiltonian
\begin{equation}
H \varphi_i = E_i \varphi_i,
\end{equation}
where $H$ is independent of spin. There are actually terms in the
Hamiltonian that are dependent upon spin (e.g., spin-orbital
coupling). These terms can usually be neglected in discussing the
chemistry of nontransition metals and are ignored here.
Then
\begin{equation}
H \psi_{i \alpha} = \left( H \varphi_i \right) \alpha = E_i \varphi_{i
\alpha} = E_i \psi_{i \alpha}
\end{equation}
and
\begin{equation}
H \psi_{i \beta} = E_i \psi_{i \beta},
\end{equation}
so that there are two spin orbital eigenstates corresponding to each
orbital eigenstate. Thus, with spin there are twice as many states as
without spin. For example, the state of the $H$ atoms become $\psi_{1 s
\alpha}$, and $\psi_{1 s \beta}$ with energy
\begin{equation}
E = - {1 \over 2} \left( {e^2 \over a_0} \right)
\end{equation}
$\psi_{2s \alpha}$, $\psi_{2s \beta}$, $\psi_{2 py \beta}$, $\psi_{2pz
\alpha}$, $\psi_{2pz \beta}$, with energy
\begin{equation}
E = - {1 \over 8} \left( {e^2 \over a_0} \right)
\end{equation}
and $\psi_{3s \alpha}$, $\psi_{3s \beta}$, etc., with energy
\begin{equation}
E = - {1 \over 18} \left( {e^2 \over a_0} \right) ,
\end{equation}
etc.
In quantum mechanics, a state with total angular moment quantum number $L$
leads to a total of $2L + 1$ states having component along the $z$ axis of
\begin{equation}
M_L = + L , + L - 1 , + L - 2 ,\dots , -L + 1 , - L .
\end{equation}
A more proper review of angular momentum is given in Section
\ref{chap4-app-b}. Thus, with $L = 1$ we obtain three states,
$M_L = + 1, 0, - 1$. With $L = 1/2$ we obtain two states, $M_L = +
1/2$, and $-1/2$. The spin of an electron has two possible states,
$M_S = + 1/2$ and $-1/2$, and we say that the electron has a spin of
\emph{one-half}.
\subsection{Two Electrons}
If $\Phi(1,2)$ is an eigenfunction of the two-electron Hamiltonian
$H(1,2)$,
\begin{equation}
H(1,2) \Phi(1,2) = E \Phi(1,2) ,
\label{chap4-eqno3}
\end{equation}
the inclusion of electron spin leads to a total of four states,
\begin{equation}
\Psi_{\alpha \alpha} (1,2) = \Psi(1,2) \alpha ( 1 ) \alpha ( 2 )
\end{equation}
\begin{equation}
\Psi_{\alpha \beta} ( 1 , 2 ) = \Psi ( 1 , 2 ) \alpha ( 1 ) \beta ( 2 )
\end{equation}
\begin{equation}
\Psi_{\beta \alpha} ( 1 , 2 ) = \Psi ( 1 , 2 ) \beta ( 1 ) \alpha ( 2 )
\end{equation}
\begin{equation}
\Psi_{\beta\beta} ( 1 , 2 ) = \Psi ( 1 , 2 ) \beta ( 1 ) \beta ( 2 )
\end{equation}
all of which are eigenfunctions of $H$
\begin{equation}
H \Psi_{ij} = E \Psi_{ij}
\label{chap4-eqno4}
\end{equation}
with the same energy. In Chapter 2 we found that since the Hamiltonian is
unchanged upon transposing the electrons,
\begin{equation}
H (1 , 2) = H ( 2 , 1),
\end{equation}
then its eigenstates (\ref{chap4-eqno3}) must each be either symmetric
or antisymmetric upon transposition, $\tau$,
\begin{equation}
\tau \Phi = \pm \Phi
\label{chap4-eqno5}
\end{equation}
Thus, for H$_2$,we found that the lowest two states have the form
\begin{equation}
\Phi_g ( 1 , 2 ) = \chi_l \chi_r + \chi_r \chi_l
\end{equation}
and
\begin{equation}
\Phi_u ( 1 , 2 ) = \chi_l \chi_r - \chi_r \chi_l ,
\end{equation}
which satisfy
\begin{equation}
\tau \Phi_g = + \Phi_g
\end{equation}
and
\begin{equation}
\tau \Phi_u = - \Phi_u
\end{equation}
Similarly, for He we found that the ground state was
\begin{equation}
\Phi ( 1 , 2 ) = \varphi_{1s} (1) \varphi_{1s} (2) ,
\end{equation}
which satisfies
\begin{equation}
\tau \Phi = + \Phi .
\end{equation}
Including spin, the Hamiltonian remains rigorously symmetric under
interchange of the electrons, since the electrons are identical. We
now must interchange both spatial and spin coordinates simultaneously,
denoting this as ${\bar \tau}$. Thus, the spatial spin eigenstates
$\Psi_{ij}$ in (\ref{chap4-eqno4}) must also satisfy
\begin{equation}
{\bar \tau} \Psi_{ij} = \pm \Psi_{ij}
\label{chap4-eqno6}
\end{equation}
Since
\begin{equation}
\Psi_{ij} = \Phi \chi_{ij} ,
\end{equation}
where $\chi_{ij}$ is a two-electron spin function, and since $\Phi$
satisfied (\ref{chap4-eqno5}), then (\ref{chap4-eqno6}) becomes
\begin{equation}
{\bar \tau} \Psi_{ij} = \left( {\bar \tau} \Phi \right) \left( {\bar
\tau} \chi_{ij} \right) = ( \pm ) \Phi ( {\bar \tau} \chi_{ij} ) = (
\pm ) \Psi_{ij} = ( \pm ) \Phi \chi_{ij} .
\end{equation}
The $( \pm )$ in various terms indicates only that either + or $-$ may
appear here, the $( \pm )$ of different terms need not be correlated.
Thus, we must have
\begin{equation}
{\bar \tau} \chi_{ij} = \pm \chi_{ij}
\label{chap4-eqno7}
\end{equation}
that is, the spin functions must be either symmetric or antisymmetric
under transposition of the electrons. But
\begin{equation}
{\bar \tau} \alpha \alpha = + \alpha \alpha ,
\end{equation}
\begin{equation}
{\bar \tau} \alpha \beta = \beta \alpha ,
\end{equation}
\begin{equation}
{\bar \tau} \beta \alpha = \alpha \beta
\end{equation}
\begin{equation}
{\bar \tau} \beta \beta = \beta \beta
\end{equation}
so that the $\alpha \beta$ and $\beta \alpha$ terms do not satisfy
(\ref{chap4-eqno7}). Recombining spin terms, we get
\begin{equation}
^3\chi_{\alpha \alpha} = \alpha \alpha ,
\end{equation}
\begin{equation}
^3\chi_{\alpha \beta} = \left( \alpha \beta + \beta \alpha \right) ,
\end{equation}
\begin{equation}
^3\chi_{\beta \beta} = \beta \beta
\end{equation}
\begin{equation}
^1\chi_{\alpha \beta} = ( \alpha \beta - \beta \alpha ) ,
\end{equation}
where the three $^3\chi_{ij}$ terms are symmetric and the $^1\chi$ terms is
antisymmetric, the notation will become clear momentarily.
\begin{table}
\caption{Permutational symmetries for wavefunctions of H$_2$ and He.}
\label{table4-01}
\begin{tabular}{cccccc}\\ \hline
& &\multicolumn{3}{c}{Permutation Symmetry} & Observed?\cr
& & Spatial & Spin & Total &\cr \hline
H$_2$ & $(\chi_l\chi_r + \chi_r\chi_l)(\alpha \alpha)$ & + & + & + & no\cr
& $(\chi_I\chi_r + \chi_r\chi_I)(\alpha \beta + \beta
\alpha)$ & + & + & + & no\cr
& $(\chi_I\chi_r + \chi_r\chi_I)(\beta \beta )$ & + & + & + & no\cr
& $(\chi_I\chi_r + \chi_r\chi_I)(\alpha \beta - \beta
\alpha)$ & + & $-$ & $-$ & yes\cr
& $(\chi_I\chi_r - \chi_r\chi_I)(\alpha \alpha)$ & $-$ & + & $-$ & yes\cr
& $(\chi_I\chi_r - \chi_r\chi_I)(\alpha \beta + \beta
\alpha)$ & $-$ & + & $-$ & yes\cr
& $(\chi_I\chi_r - \chi_r\chi_l)(\beta \beta)$ & $-$ & + & $-$ & yes\cr
& $(\chi_I\chi_r - \chi_r\chi_I)(\alpha \beta - \beta
\alpha)$ & $-$ & $-$ & + & no\cr
He & $(\varphi_{1s} \varphi_{1s} ) ( \alpha \alpha )$ & + & + & + & no\cr
& $( \varphi_{1s} \varphi_{1s} ) ( \alpha \beta + \beta \alpha )$ & + & + & + &
no\cr
& $( \varphi_{1s} \varphi_{1s} ) ( \beta \beta )$ & + & + & + & no\cr
& $( \varphi_+{1s} \varphi_{1s} ) ( \alpha \beta - \beta
\alpha )$ & + & $-$ & $-$ & yes\cr \hline
\end{tabular}
\end{table}
Combining the above results on spin and permutational symmetry, we
obtain the states of H$_2$ and He in Table \ref{table4-01}. As
expected, there are four possible spatial-spin states for each spatial
state, leading to a quadrupling of the states of the system, just as
the number of states for a one-electron system doubled. In each case,
all four states are equally good, all being eignestates of the
Hamiltonian wit the same energy. However, some of these states are
never observed. For two-electron systems, the only states that have
ever been observed are those that are permutationally antisymmetric,
\begin{equation}
{\bar \tau} \Psi = - \Psi .
\end{equation}
This fact, that only antisymmetric states are observed, is
incorporated into quantum mechanics by adding a new postulate called
the \emph{Pauli principle}, as will be discussed in the next section.
\section{The Pauli Principle}
In the previous section, we saw that for two electrons the identity of
the electrons leads to the expectation that each eigenstates of $H$ has
the symmetry
\begin{equation}
{\bar \tau} \Psi = \pm \Psi ,
\end{equation}
where ${\bar \tau}$ interchanges all coordinates, spatial and spin, of the
two particles. However, we noted that all experiments on electrons suggest
that
\begin{equation}
{\bar \tau} \Psi = - \Psi
\end{equation}
is the only allowed permutational symmetry for electrons. Section
\ref{chap4-app-d} has some of the historical development leading to
these ideas. We incorporate these observations into quantum mechanics
with the following postulate. The Pauli principle states that the
wavefunction for any system of electrons must change sign upon
interchange (transposition) of all coordinates (space and spin) of any
two electrons. This is a basic postulate of quantum mechanics, and is
justified by correct predictions for numerous systems.
To see what the Pauli Principle means, consider a simple two-electron
wavefunction,
\begin{equation}
\Psi_A (1 , 2 ) = \psi_a (1) \psi_b (2) ,
\label{chap4-eqno8}
\end{equation}
where 1 symbolizes all spatial and spin coordinates of electron 1 and 2,
the same for electron 2.
After interchanging the electrons, we get a new wavefunction,
\begin{equation}
\Psi_B (1,2) = \Psi_A (2,1) = \psi_b(1) \psi_a (2).
\label{chap4-eqno9}
\end{equation}
The Pauli principle states that
\begin{equation}
\Psi_B (1,2) = - \Psi_A (1,2)
\end{equation}
and hence, that
\begin{equation}
\psi_b (1) \psi_a (2) = \psi_a (1) \psi_b (2) .
\end{equation}
This is obviously not true, and, thus, the simple wavefunction
(\ref{chap4-eqno8}) is not acceptable for describing electrons.
However, it is easy to fix up a suitable wavefunction by subtracting
(\ref{chap4-eqno9}) from (\ref{chap4-eqno8}),
\begin{equation}
\Psi_C (1,2) = \Psi_A (1,2) - \Psi_A (2,1) = \psi_a (1) \psi_b (2) -
\psi_b (1) \psi_a (2).
\label{chap4-eqno10}
\end{equation}
Thus, starting with (10) and interchanging electrons, leads to
\begin{eqnarray}
\Psi_C (2,1) &=& \psi_a (2) \psi_b (1) - \psi_b (2) \psi_a (1)\cr
&=& \psi_b (1) \psi_a (2) - \psi_a (1) \psi_b (2)\cr
&=& - \psi_a (1) \psi_b (2) + \psi_b (1) \psi_a (2)\cr
&=& - \Psi_C (1,2),
\end{eqnarray}
so that the wavefunction (\ref{chap4-eqno10}) does indeed satisfy the
Pauli principle.
For convenience in describing wavefunctions such as
(\ref{chap4-eqno10}), we will define the antisymmetrizer ${\cal A}$
\begin{equation}
{\cal A} \psi_a (1) \psi_b (2) = \psi_a (1) \psi_b (2) - \psi_b (1)
\psi_a (2),
\label{chap4-eqno11}
\end{equation}
which takes a spin orbital product and converts it into a wavefunction
satisfying the Pauli principle. Now let us consider some simple
cases.
\subsection{Identical Spin Orbitals}
Assume that $\psi_b = \psi_a$. In this case, the wavefunction
(\ref{chap4-eqno10}) and (\ref{chap4-eqno11}) becomes
\begin{equation}
\psi_a (1) \psi_a (2) - \psi_a (1) \psi_a (2) = 0.
\end{equation}
Therefore, the Pauli principle says that we cannot have two electrons in
the same spin orbital.
\subsection{Orthogonality of Spin Orbitals}
Consider a case where $\psi_a$ and $\psi_b$ are orthogonal,
\begin{equation}
\langle \psi_a | \psi_b \rangle = 0
\end{equation}
and define a new function
\begin{equation}
\psi_c = \psi_b + \lambda \psi_a ,
\end{equation}
where $\lambda \not= 0$, so that $\psi_c$ is not orthogonal to $\psi_a$,
\begin{equation}
\langle \psi_a | \psi_c \rangle = \langle \psi_a | \psi_b \rangle + \lambda
\langle \psi_a | \psi_a \rangle = 0 + \lambda = \lambda \not= 0 .
\end{equation}
Forming a new wavefunction, using $\psi_a$ and $\psi_c$ V), we obtain
\begin{eqnarray}
\psi_a (1) \psi_c (2) - \psi_c (1) \psi_a (2) &= \psi_a \psi_b + \lambda
\psi_a \psi_a - \psi_b \psi_a - \lambda \psi_a \psi_a\cr
&= \psi_a \psi_b - \psi_a \psi_a .\cr
\end{eqnarray}
Because of the Pauli principle, the wavefunction with partially
overlapping spin orbitals $\psi_a$ and $\psi_b$ is identical to the
waverfunction in which these spin orbitals are orthogonal.
Consequently, we say that the Pauli principle leads to orthogonality
of spin orbitals. Since the spin orbitals are normalized, we can
require that the spin orbitals of antisymmetric wavefunctions
(\ref{chap4-eqno10}) and (\ref{chap4-eqno11}), be orthonormal,
\begin{equation}
\langle \psi_i | \psi_j \rangle = \delta_{ij} .
\label{chap4-eqno12}
\end{equation}
\subsection{Nonuniqueness}
Starting with the wavefunctions (\ref{chap4-eqno10}) and
(\ref{chap4-eqno11}), consider the new wavefunction
\begin{equation}
\Psi_2 = {\cal A} \bar{\psi}_a \bar{\psi}_b
= \bar{\psi}_a \bar{\psi}_b - \bar{\psi}_b \bar{\psi}_a,
\label{chap4-eqno13}
\end{equation}
where
\begin{equation}
\bar{\psi}_a = \cos \theta \psi_a + \sin \theta \psi_b
\label{chap4-eqno14a}
\end{equation}
and
\begin{equation}
\bar{\psi}_b = - \sin \theta \psi_a + \cos \theta \psi_b .
\label{chap4-eqno14b}
\end{equation}
If $\psi_a$ and $\psi_b$ are orthonormal, (\ref{chap4-eqno12}), then
the new orbitals $\bar{\psi}_a$ and $\bar{\psi}_b$ are also
orthonormal,
\begin{equation}
\langle \bar{\Psi}_i \vert \bar{\Psi}_j \rangle = \delta_{ij} .
\end{equation}
Substituting (\ref{chap4-eqno14a})--(\ref{chap4-eqno14b}) into
(\ref{chap4-eqno13}) leads to
\begin{eqnarray}
\Psi_2 &=& -\sin\theta\cos\theta {\cal A} \psi_a \psi_a
+ \sin\theta\cos\theta {\cal A} \psi_b \psi_b \\
&&+ \cos^2 \theta {\cal A} \psi_a\psi_b - \sin^2 \theta {\cal A}
\psi_b \psi_a \\
&=& {\cal A} \psi_a\psi_b = \Psi_1
\end{eqnarray}
or
\begin{equation}
{\cal A} \bar{\psi}_a \bar{\psi}_b = {\cal A} \psi_a \psi_b .
\end{equation}
Thus, given an antisymmetrized wavefunction written in terms of spin
orbitals $\psi_a$ and $\psi_b$, this wavefunction is unchanged upon
recombining the spin orbitals; the wavefunction retains
orthonormality. The Pauli principle states that only the
two-dimensional space spanned by $\psi_a$ and $\psi_b$ is significant,
but not the particular axis or basis functions used to describe this
space.
\subsection{Summary for Two Electrons}
Starting with two spin orbitals $\psi_a$ and $\psi_b$, one could construct
four possible wavefunctions,
\begin{equation}
\psi_a (1) \psi_a (2)
\end{equation}
\begin{equation}
\psi_a (1) \psi_b (2)
\end{equation}
\begin{equation}
\psi_b (1) \psi_a (2)
\end{equation}
\begin{equation}
\psi_b (1) \psi_b (2) .
\end{equation}
Of these four possibilities, only the following combination of the second
and third functions
\begin{equation}
\psi_a (1) \psi_b (2) = \psi_a (1) \psi_b (2) - \psi_b (1) \psi_a
(2)
\label{chap4-eqno15}
\end{equation}
are allowed by the Pauli principle.
For convenience in writing such wavefunctions, we define the
antisymmetrizer ${\cal A}$, so that ${\cal A} \psi_a \psi_b$ is always
understood to denote $\psi_a \psi_b - \psi_b \psi_a$. If the two spin
orbitals are identical, the wavefunction (\ref{chap4-eqno15}) is zero
and, indeed, the spin orbitals can be taken as orthogonal without
affecting the wavefunction. Moreover, the spin orbitals $\psi_a$ and
$\psi_b$ can be recombined, retaining orthonormality, without changing
the wavefunction. For the antisymmetrized wavefunction
(\ref{chap4-eqno15}), any overlap between the spinorbitals gets
zapped, deleted, by the antisymmetrizer; hence, the spin orbitals can
be taken as orthogonal, with no restriction.
\subsection{Determinants}
There is a simple way to use determinants in writing wavefunctions
satisfying the Pauli principle. The determinant is defined as
\begin{equation}
\left| \matrix{a & b\cr
c & d\cr}\right| = ad - bc
\end{equation}
and
\begin{equation}\left| \matrix{ a & b & c\cr
d & e & f\cr
g & h & i\cr}\right| = aei + bfg + chd - ceg - bdi - ahf
\end{equation}
etc. For matrices of orders 2 and 3, the determinant is most rapidlly
calculated by assigning a $+1$ coefficient for products arising from
multiplying along the downward diagonals, including parallel shifted
diagonals, and assigning a $-1$ coefficient for
products arising from multiplying along upward diagonals. The general
definition is
\begin{equation}
\det \left[ a_{11} a_{12} \cdots a_{nn} \right] = \sum_{ij
\cdots \omega} \epsilon_{ij \cdots \omega} a_{1i}
a_{2j} \cdots a_{n \omega} ,
\end{equation}
where $\epsilon_{ij \cdots \omega} = 0$, unless all indices are
different, say $\epsilon_{ij \cdots \omega} = +1$ when $ij \cdots
\omega$ is an even permutation of $12 \cdots n$, and $\epsilon_{ij
\cdots \omega} = -1$ when $ij \cdots \omega$ is an odd permutation of
$12 \cdots n$. An odd permutation is one that is constructed from an
odd number of transpositions, and an even permutation is one that is
constructed from an even number of transpositions. Thus, the
determinant automatically changes sign upon interchange of any two
rows or columns.
Important properties of a determinant are:
\begin{enumerate}
\item The determinant changes sign upon interchange of any two rows or
any two columns, e.g.,
\begin{equation}
\left| \matrix{b & c\cr
d & e\cr} \right| = bd - ad = - \left| \matrix{a & b \cr
c & d\cr} \right|.
\end{equation}
\item The determinant is zero, if any two columns, or any two rows,
are identical, e.g.,
\begin{equation}
\left| \matrix{a & a\cr
c & c\cr} \right| = ac - ac = 0 .
\end{equation}
\item Adding some amount of any one column to any other column, leaves
the determinant unchanged,
\begin{equation}
\left| \matrix{a & b+ \lambda a\cr
c & d+ \lambda c\cr} \right| = a(d+ \lambda c ) - ( b + \lambda a ) c =
ad + \lambda ac - bd - \lambda ac = \left| \matrix{a & b \cr
d & d \cr} \right|
\end{equation}
(the same is true for rows). Thus, each row can be made as orthogonal
to each other row without changing the determinant.
\end{enumerate}
The wavefunction (\ref{chap4-eqno15}) can be written as a determinant,
as follows
\begin{equation}
\left| \matrix{\psi_a (1) & \psi_b (1)\cr
\psi_a (2) & \psi_b(2)\cr} \right| = \psi_a (1) \psi_b (2) - \psi_b (1)
\psi_a (2) = {\cal A} \psi_a (1) \psi_b (2)
\end{equation}
where the antisymmetrizer ${\cal A}$ can be referred to as the
\emph{determinant operator}.
Similarly, starting with the $3! = 6$ product wavefunctions,
\begin{equation}
\psi_a (1) \psi_b (2) \psi_c (3)
\end{equation}
the only combination satisfying the Pauli principle is
\begin{eqnarray}
\Psi (1,2,3) &=& \mathcal{A}\psi_a (1) \psi_b (2) \psi_c (3)\\
&=& \left[ \psi_a \psi_b \psi_c + \psi_b \psi_c \psi_a + \psi_c
\psi_a \psi_b - \psi_b \psi_a \psi_c - \psi_c \psi_b \psi_a - \psi_a
\psi_c \psi_b \right]\\
&=& \left| \matrix{\psi_a (1) & \psi_b (1) & \psi_c (1)\cr
\psi_a (2) & \psi_b (2) & \psi_c (2)\cr
\psi_a (3) & \psi_b (3) & \psi_c (3)\cr} \right|
\label{chap4-eqno16}
\end{eqnarray}
For example, interchanging electrons 1 and 3, leads to
\begin{eqnarray}
\Psi (3,2,1) &=& \left[ \psi_c \psi_b \psi_a + \psi_a \psi_c \psi_b +
\psi_b \psi_a \psi_c - \psi_c \psi_a \psi_b - \psi_a \psi_b \psi_c -
\psi_b \psi_c \psi_a \right]\\
&=& - \psi_a \psi_b \psi_c - \psi_b \psi_c \psi_a - \psi_c \psi_a \psi_b +
\psi_b \psi_a \psi_c + \psi_c \psi_b \psi_a + \psi_a \psi_c \psi_b\\
&=& - \Psi (1 , 2, 3 ).
\end{eqnarray}
Note also, from the properties of determinants, that interchange of
any two columns of (\ref{chap4-eqno16}) (i.e. interchanging two spin
orbitals) merely changes the sign of the wavefunction so that
\begin{equation}
{\cal A} \psi_b \psi_a \psi_c = -{\cal A} \psi_a \psi_b \psi_c .
\end{equation}
Using the properties of the determinant, one can show that:
\begin{enumerate}
\item ${\cal A} \psi_a \psi_b \psi_c \cdots$
changes sign upon interchange of any pair of electrons, thus the Pauli
principle is always satisfied.
\item ${\cal A} \psi_a \psi_b \psi_c \cdots = 0$
if any two spin orbitals are equal (e.g. ${\cal A} \psi_a \psi_a
\psi_c = 0$).
\item All orbitals in ${\cal A} \psi_a \psi_b \psi_c$ can be taken as
orthogonal with no restrictions. Thus, we take $\langle \psi_i | \psi_j
\rangle = \delta_{ij}$.
\item Interchange of any two spin orbitals of
${\cal A} \psi_a \psi_b \psi_c \cdots$
merely changes the sign of the wavefunction. Thus, any permutation of the
spin orbitals leads back to the original wavefunction, or else changes the
sign. Since the sign of the total wavefunction has no significance, the
order of the spin orbitals in ${\cal A} \psi_a \psi_b \psi_c \cdots$
is of no significance.
\item We may take any recombination of the $\psi_i$, preferring
orthonormality to obtain ${\cal A} \bar{\psi}_a \bar{\psi}_b
\bar{\psi}_c \cdots = {\cal A} \psi_a \psi_b \psi_c \cdot \cdot
\cdot$.
\end{enumerate}
For an $N$-electron system, there are $N!$ possible product terms, such as
\begin{equation}
\psi_a (1) \psi_b (2)\cdots\psi_z (N) .
\end{equation}
Of these, there is one combination that satisfies the Pauli principle.
This combination can be written as an $N$ by $N$ determinant
\begin{equation}
\det\psi_a (1) \psi_b (2) \cdots \psi_z (N) ,
\end{equation}
where the spin orbitals are orthonormal
\begin{equation}
\langle \psi_i \vert \psi_j \rangle = \delta_{ij} .
\end{equation}
Such determinants of functions are referred to in the mathematical
literature as St\"ackel determinants. They were first used to
describe electronic wavefunctions by Heisenberg and were popularized
by J. L. Slater \cite{chap4-ref1}. They are often referred to as
\emph{Slater determinants}.
For $N$ noninteracting but identical particles, there would be $N!$
possible states, all with the same energy. Of these, only one is allowed
by quantum mechanics. In developing statistical mechanics, the famous
engineer J. W. Gibbs, realized that use of $N!$ factor led to ridiculous
entropies and arbitrarily just divided the total number of
states by $N!$. He got the right answer but missed a golden opportunity
to invent quantum mechanics before the physicists stumbled into it.
\subsection{More on Spins for Two Electrons}
Defining the total $M_s$ quantum number for a spin function, as the sum
of the $M_s$ numbers for each electron, leads to
\begin{eqnarray}
\left. \matrix{\alpha\alpha & M_s = +1\cr
\alpha \beta + \beta \alpha & M_s = 0\cr
\beta \beta & M_s = -1\cr}\right\} s = 1\cr
\end{eqnarray}
\begin{equation}
\left. \alpha \beta - \beta \alpha ~~ M_s = 0\right\} s = 0.
\end{equation}
The three states of the triplet have $M_S = +1, 0, - 1$, and we refer
to this as the \emph{spin-one states} ($S = 1$). Whereas the singlet
state has only $M_S = 0$, we refer to this as the \emph{spin-zero
states} ($S=0$). Spin states are discussed more carefully in a
following section.
\subsection{Noninteracting Particles}
Consider, for the moment, a simple system in which the electrons do not
interact, say one electron in California and the other on the moon. The
Hamiltonian of the system is
\begin{equation}
H(1,2) = h(1) + h(2),
\end{equation}
and if $\psi_a$ and $\psi_b$ are eigenstates of $h$,
\begin{equation}
h \psi_a = \epsilon_a \psi_a
\end{equation}
and
\begin{equation}
h \psi_b = \epsilon_b \psi_b ,
\end{equation}
then either produce wavefunction is an eigenfunction of $H$
\begin{equation}
H \psi_a \psi_b = \left( \epsilon_a + \epsilon_b \right) \psi_a \psi_b
\end{equation}
and
\begin{equation}
H \psi_b \psi_a = \left( \epsilon_a + \epsilon_b \right) \psi_b \psi_a .
\end{equation}
However, the Pauli principle says that only the wavefunction
(\ref{chap4-eqno15})
\begin{equation}
\psi = \psi_a \psi_b - \psi_b \psi_a
\end{equation}
is allowed. Thus, even electrons 200,000 miles apart have a
phase relation connecting them. Quantum mechanics is
stranger than fiction!
\section{Spin for Two or More Electrons}
\subsection{Two Electrons}
Because of the Pauli principle, only one spin state is consistent with the
symmetric spatial wavefunction,
\begin{equation}
\left( \varphi_a \varphi_b + \varphi_b \varphi_a \right) \left( \alpha
\beta - \beta \alpha \right)
\label{chap4-eqno17}
\end{equation}
and, consequently, this is called a \emph{singlet state}. On the
other hand, three spin states are allowed for an antisymmetric spatial
wavefunction,
\begin{equation}
\left( \varphi_a \varphi_b - \varphi_b \varphi_a \right)\left( \alpha
\alpha \right)
\label{chap4-eqno18a}
\end{equation}
\begin{equation}
\left( \varphi_a \varphi_b - \varphi_b \varphi_a \right)\left( \alpha
\beta + \beta \alpha \right)
\label{chap4-eqno18b}
\end{equation}
\begin{equation}
\left( \varphi_a \varphi_b - \varphi_b \varphi_a \right)\left( \beta
\beta \right)
\label{chap4-eqno18c}
\end{equation}
and these are collectively referred to as a \emph{triplet state}.
Since the energy expression does not depend upon spin, the energies of
the allowed wavefunctions (\ref{chap4-eqno17}) and
(\ref{chap4-eqno18a})--(\ref{chap4-eqno18c}) are the same as for the
forbidden states,
\begin{equation}
\left( \varphi_a \varphi_b + \varphi_b \varphi_a \right)\left( \alpha
\alpha \right)
\end{equation}
\begin{equation}
\left( \varphi_a \varphi_b + \varphi_b \varphi_a \right)\left( \alpha
\beta + \beta \alpha \right)
\end{equation}
\begin{equation}
\left( \varphi_a \varphi_b + \varphi_b \varphi_a \right)\left( \beta
\beta \right)
\end{equation}
\begin{equation}
\left( \varphi_a \varphi_b - \varphi_b \varphi_a \right) \left( \alpha
\beta - \beta \alpha \right) ,
\label{chap4-eqno19}
\end{equation}
respectively. However, because of the Pauli principle, only
(\ref{chap4-eqno17})--(\ref{chap4-eqno18c}) are allowed, leading to
a correlation between spatial symmetry (and hence, energy) and spin.
Thus, if $\varphi_a$ and $\varphi_b$ are the $\chi_l$ and $\chi_r$
orbitals of H$_2$, state 1 is better, leading to the singlet spin
state. In this case, we say that bonding electrons prefer to have
their spins aligned antiparallel. On the other hand, if $\varphi_a$
and $\varphi_b$ are the $\varphi_g$ and $\varphi_u$ orbitals of the
excited state of H$_2$, then state 2 is better and we say that
electrons in orthogonal orbitals prefer to have their spin aligned
parallel. Of course the spin has nothing to do with the energy, but
such descriptions do serve to keep track of the spatial symmetries
that do determine energy.
Since the three spin functions in (\ref{chap4-eqno18a})
--(\ref{chap4-eqno18c}) all lead to the
same energy, it is sufficient to consider just one. We will always
use the maximum value of $M_S$, namely, $\alpha \alpha$ for $S = 1$
and, $\alpha\beta - \beta\alpha$ for $S = 0$. Thus,
(\ref{chap4-eqno17}) becomes
\begin{eqnarray}
\left( \varphi_a \varphi_b - \varphi_b \varphi_a \right) \alpha \alpha &=&
\left[ \varphi_a (1) \varphi_b (2) - \varphi_b (1) \varphi_a (2) \right]
\alpha ( 1 ) \alpha (2)\cr
&=& \left( \varphi_a \alpha \right) \left( \varphi_b \alpha \right) -
\left( \varphi_b \alpha \right) \left( \varphi_a \alpha \right)\cr
&=& {\cal A} \left[ \left( \varphi_a \alpha \right) \left( \varphi_b
\alpha \right) \right]
\end{eqnarray}
On the other hand, the wavefunction (\ref{chap4-eqno19}) requires two
determinants,
\begin{eqnarray}
\left( \varphi_a \varphi_b + \varphi_b \varphi_a \right) \left( \alpha
\beta - \beta \alpha \right) &=& {\cal A} \left( \varphi_a \varphi_b +
\varphi_b \varphi_a \right) \alpha \beta\cr
&=&{\cal A} \left( \varphi_a \alpha \right) \left( \varphi_b \beta
\right) + {\cal A} \left( \varphi_b \alpha \right) \left( \varphi_a \beta
\right)\cr
&=& {\cal A} \left( \varphi_a \varphi_b \right) \left( \alpha \beta - \beta
\alpha \right).
\end{eqnarray}
\subsection{Three Electrons}
For three electrons, there are eight spin functions, $\alpha \alpha
\alpha$, $\alpha \alpha \beta$, $\alpha \beta \alpha$, $\beta \alpha
\alpha$, $\alpha \beta \beta$, $\beta \alpha \beta$, $\beta \beta \alpha$,
and $\beta \beta \beta$. You should check to see that all eight
functions are orthogonal. Combining these into proper spin functions, leads to
\begin{equation}
\left. \matrix{\alpha \alpha \alpha & M_S + {3 \over 2}\cr
\alpha \alpha \beta + \alpha \beta \alpha & M_S + {1 \over 2}\cr
\alpha \beta \beta + \beta \alpha \beta + \beta \beta \alpha & M_S = - {1
\over 2}\cr
\beta \beta \beta & M_S = - {3 \over 2}\cr}\right\} s + {3 \over 2} ~
{\rm quartet}
\end{equation}
\begin{equation}
\left. \matrix{(\alpha \beta - \beta \alpha)\alpha & M_s = {1 \over 2}\cr
(\alpha \beta - \beta \alpha ) \beta & M_s = - {1 \over 2}\cr}\right\} s =
{1 \over 2} ~ {\rm doublet}
\end{equation}
\begin{equation}
\left. \matrix{ 2 ( \alpha \alpha ) \beta - ( \alpha \beta + \beta
\alpha ) \alpha & M_S = {1 \over 2}\cr
( \alpha \beta + \beta \alpha ) \beta - 2 ( \beta \beta ) \alpha & M_S = -
{1 \over 2}\cr}\right\} s = {1 \over 2} ~ {\rm doublet}
\end{equation}
The particular combinations involved here, for $M_s = 1/2$ and $M_S = -
1/2$ are of no concern here. In discussing the $S = 3/2$ or quartet, it is
sufficient to consider the $M_S = 3/2$ function of $\alpha(l)\alpha(2)\alpha(3)$.
\subsection{Spin States for N Electrons}
Given two choices, $\alpha$ and $\beta$, for the spin of each electron,
there are $2N$ possible spin functions for an $N$-electron system. These
functions are most conveniently discussed using the theory of angular
momentum. In this course, we make little explicit use of angular momentum
theory. However, the terminology incorporates aspects of this theory;
hence, some discussion is appropriate.
Section \ref{chap4-app-b} contains a review of the formalism. The
results (relevant here) are the following. A set of $2S + 1$ states,
\begin{equation}
\chi_{S,S} , \chi_{S,S-1} , \cdots , \chi_{S,-S}
\label{chap4-eqno20}
\end{equation}
is said to be an angular momentum $S$ state if
\begin{equation}
\hat{S}^2 \chi_{S,M} = S(S + 1) \chi_{S,M}
\end{equation}
and
\begin{equation}
\hat{S}_z \chi_{S,M} = M \chi_{S,M}
\end{equation}
where $\hat{S}^2$ and $\hat{S}_z$ are referred to as the total angular
momentum operator and the angular momentum projection operator. The
numbers $S$ and $M$ must be integers or half-integers, leading to the
following possible cases. For singlet
\begin{equation}
S = 0 , M = 0
\end{equation}
for doublet
\begin{equation}
S = {1 \over 2} , M = \pm {1 \over 2}
\end{equation}
for triplet
\begin{equation}
S = 1 , M = 0, \pm 1
\end{equation}
for quartet
\begin{equation}
S = {3 \over 2} , M = \pm {1 \over 2} , \pm {3 \over 2}
\end{equation}
etc. Since the Hamiltonian does not depend on spin, no magnetic
field, the $2S +1$ states in (\ref{chap4-eqno20}) all have the same
energy. The states of $\chi_{S,M}$ with the same $S$ but different
$M$, are related by the raising and lowering operators, $\hat{S}^+$
and $\hat{S}^-$,
\begin{equation}
\hat{S}^+ \chi_{S,M} = \sqrt{S(S+1) - M_S (M_S + 1) \chi_{S,M+1}}
\label{chap4-eqno21a}
\end{equation}
\begin{equation}
\hat{S}^- \chi_{S,M+1} = \sqrt{S(S+1) - M_S (M_S + 1) \chi_{S,M}}.
\label{chap4-eqno21b}
\end{equation}
Thus, in particular,