-
Notifications
You must be signed in to change notification settings - Fork 3
/
pmap.ml
310 lines (266 loc) · 9.24 KB
/
pmap.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License, with *)
(* the special exception on linking described in file ../LICENSE. *)
(* *)
(***********************************************************************)
(* Modified by Susmit Sarkar 2010-11-30 *)
(* $Id: map.ml 10468 2010-05-25 13:29:43Z frisch $ *)
(* A map from ordered keys *)
type ('key,'a) rep =
Empty
| Node of ('key,'a) rep * 'key * 'a * ('key,'a) rep * int
let height = function
Empty -> 0
| Node(_,_,_,_,h) -> h
let create l x d r =
let hl = height l and hr = height r in
Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))
let singleton x d = Node(Empty, x, d, Empty, 1)
let bal l x d r =
let hl = match l with Empty -> 0 | Node(_,_,_,_,h) -> h in
let hr = match r with Empty -> 0 | Node(_,_,_,_,h) -> h in
if hl > hr + 2 then begin
match l with
Empty -> invalid_arg "Map.bal"
| Node(ll, lv, ld, lr, _) ->
if height ll >= height lr then
create ll lv ld (create lr x d r)
else begin
match lr with
Empty -> invalid_arg "Map.bal"
| Node(lrl, lrv, lrd, lrr, _)->
create (create ll lv ld lrl) lrv lrd (create lrr x d r)
end
end else if hr > hl + 2 then begin
match r with
Empty -> invalid_arg "Map.bal"
| Node(rl, rv, rd, rr, _) ->
if height rr >= height rl then
create (create l x d rl) rv rd rr
else begin
match rl with
Empty -> invalid_arg "Map.bal"
| Node(rll, rlv, rld, rlr, _) ->
create (create l x d rll) rlv rld (create rlr rv rd rr)
end
end else
Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1))
let empty = Empty
let is_empty = function Empty -> true | _ -> false
let rec add cmp x data = function
Empty ->
Node(Empty, x, data, Empty, 1)
| Node(l, v, d, r, h) ->
let c = cmp x v in
if c = 0 then
Node(l, x, data, r, h)
else if c < 0 then
bal (add cmp x data l) v d r
else
bal l v d (add cmp x data r)
let rec find cmp x = function
Empty ->
raise Not_found
| Node(l, v, d, r, _) ->
let c = cmp x v in
if c = 0 then d
else find cmp x (if c < 0 then l else r)
let rec mem cmp x = function
Empty ->
false
| Node(l, v, d, r, _) ->
let c = cmp x v in
c = 0 || mem cmp x (if c < 0 then l else r)
let rec min_binding = function
Empty -> raise Not_found
| Node(Empty, x, d, r, _) -> (x, d)
| Node(l, x, d, r, _) -> min_binding l
let rec max_binding = function
Empty -> raise Not_found
| Node(l, x, d, Empty, _) -> (x, d)
| Node(l, x, d, r, _) -> max_binding r
let rec remove_min_binding = function
Empty -> invalid_arg "Map.remove_min_elt"
| Node(Empty, x, d, r, _) -> r
| Node(l, x, d, r, _) -> bal (remove_min_binding l) x d r
let merge t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) ->
let (x, d) = min_binding t2 in
bal t1 x d (remove_min_binding t2)
let rec remove cmp x = function
Empty ->
Empty
| Node(l, v, d, r, h) ->
let c = cmp x v in
if c = 0 then
merge l r
else if c < 0 then
bal (remove cmp x l) v d r
else
bal l v d (remove cmp x r)
let rec iter f = function
Empty -> ()
| Node(l, v, d, r, _) ->
iter f l; f v d; iter f r
let rec map f = function
Empty ->
Empty
| Node(l, v, d, r, h) ->
let l' = map f l in
let d' = f d in
let r' = map f r in
Node(l', v, d', r', h)
let rec mapi f = function
Empty ->
Empty
| Node(l, v, d, r, h) ->
let l' = mapi f l in
let d' = f v d in
let r' = mapi f r in
Node(l', v, d', r', h)
let rec fold f m accu =
match m with
Empty -> accu
| Node(l, v, d, r, _) ->
fold f r (f v d (fold f l accu))
let rec for_all p = function
Empty -> true
| Node(l, v, d, r, _) -> p v d && for_all p l && for_all p r
let rec exists p = function
Empty -> false
| Node(l, v, d, r, _) -> p v d || exists p l || exists p r
let filter cmp p s =
let rec filt accu = function
| Empty -> accu
| Node(l, v, d, r, _) ->
filt (filt (if p v d then add cmp v d accu else accu) l) r in
filt Empty s
let partition cmp p s =
let rec part (t, f as accu) = function
| Empty -> accu
| Node(l, v, d, r, _) ->
part (part (if p v d then (add cmp v d t, f) else (t, add cmp v d f)) l) r in
part (Empty, Empty) s
(* Same as create and bal, but no assumptions are made on the
relative heights of l and r. *)
let rec join cmp l v d r =
match (l, r) with
(Empty, _) -> add cmp v d r
| (_, Empty) -> add cmp v d l
| (Node(ll, lv, ld, lr, lh), Node(rl, rv, rd, rr, rh)) ->
if lh > rh + 2 then bal ll lv ld (join cmp lr v d r) else
if rh > lh + 2 then bal (join cmp l v d rl) rv rd rr else
create l v d r
(* Merge two trees l and r into one.
All elements of l must precede the elements of r.
No assumption on the heights of l and r. *)
let concat cmp t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (_, _) ->
let (x, d) = min_binding t2 in
join cmp t1 x d (remove_min_binding t2)
let concat_or_join cmp t1 v d t2 =
match d with
| Some d -> join cmp t1 v d t2
| None -> concat cmp t1 t2
let rec split cmp x = function
Empty ->
(Empty, None, Empty)
| Node(l, v, d, r, _) ->
let c = cmp x v in
if c = 0 then (l, Some d, r)
else if c < 0 then
let (ll, pres, rl) = split cmp x l in (ll, pres, join cmp rl v d r)
else
let (lr, pres, rr) = split cmp x r in (join cmp l v d lr, pres, rr)
let rec merge cmp f s1 s2 =
match (s1, s2) with
(Empty, Empty) -> Empty
| (Node (l1, v1, d1, r1, h1), _) when h1 >= height s2 ->
let (l2, d2, r2) = split cmp v1 s2 in
concat_or_join cmp (merge cmp f l1 l2) v1 (f v1 (Some d1) d2) (merge cmp f r1 r2)
| (_, Node (l2, v2, d2, r2, h2)) ->
let (l1, d1, r1) = split cmp v2 s1 in
concat_or_join cmp (merge cmp f l1 l2) v2 (f v2 d1 (Some d2)) (merge cmp f r1 r2)
| _ ->
assert false
type ('key,'a) enumeration = End | More of 'key * 'a * ('key,'a) rep * ('key,'a) enumeration
let rec cons_enum m e =
match m with
Empty -> e
| Node(l, v, d, r, _) -> cons_enum l (More(v, d, r, e))
let compare cmp_key cmp_a m1 m2 =
let rec compare_aux e1 e2 =
match (e1, e2) with
(End, End) -> 0
| (End, _) -> -1
| (_, End) -> 1
| (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) ->
let c = cmp_key v1 v2 in
if c <> 0 then c else
let c = cmp_a d1 d2 in
if c <> 0 then c else
compare_aux (cons_enum r1 e1) (cons_enum r2 e2)
in compare_aux (cons_enum m1 End) (cons_enum m2 End)
let equal cmp_key cmp_a m1 m2 =
let rec equal_aux e1 e2 =
match (e1, e2) with
(End, End) -> true
| (End, _) -> false
| (_, End) -> false
| (More(v1, d1, r1, e1), More(v2, d2, r2, e2)) ->
cmp_key v1 v2 = 0 && cmp_a d1 d2 &&
equal_aux (cons_enum r1 e1) (cons_enum r2 e2)
in equal_aux (cons_enum m1 End) (cons_enum m2 End)
let rec cardinal = function
Empty -> 0
| Node(l, _, _, r, _) -> cardinal l + 1 + cardinal r
let rec bindings_aux accu = function
Empty -> accu
| Node(l, v, d, r, _) -> bindings_aux ((v, d) :: bindings_aux accu r) l
let bindings s =
bindings_aux [] s
let choose = min_binding
(* Wrapper functions now *)
type ('key,'a) map = {cmp:'key -> 'key -> int; m:('key,'a) rep}
let empty cmp = {cmp = cmp; m = Empty}
let is_empty m = is_empty m.m
let mem k m = mem m.cmp k m.m
let add k a m = {m with m = add m.cmp k a m.m}
let singleton cmp k a = {cmp = cmp; m = singleton k a}
let remove k m = {m with m = remove m.cmp k m.m}
let merge f a b = {cmp = a.cmp; (* does not matter, a and b should have the same comparison function *)
m = merge a.cmp f a.m b.m;}
let compare f a b = compare a.cmp f a.m b.m
let equal f a b = equal a.cmp f a.m b.m
let iter f m = iter f m.m
let fold f m b = fold f m.m b
let for_all f m = for_all f m.m
let exists f m = exists f m.m
let filter f m = {m with m = filter m.cmp f m.m}
let partition f m =
let m1,m2 = partition m.cmp f m.m in
({m with m = m1},{m with m = m2})
let cardinal m = cardinal m.m
let bindings m = bindings m.m
let min_binding m = min_binding m.m
let max_binding m = max_binding m.m
let choose m = choose m.m
let split k m =
let (m1,opt,m2) = split m.cmp k m.m in
({m with m = m1},opt,{m with m = m2})
let find k m = find m.cmp k m.m
let map f m = {m with m = map f m.m}
let mapi f m = {m with m = mapi f m.m}