-
Notifications
You must be signed in to change notification settings - Fork 3
/
pset.mli
143 lines (110 loc) · 6.05 KB
/
pset.mli
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License, with *)
(* the special exception on linking described in file ../LICENSE. *)
(* *)
(***********************************************************************)
(* Modified by Scott Owens 2010-10-28 *)
(* $Id: set.mli 6974 2005-07-21 14:52:45Z doligez $ *)
(** Sets over ordered types.
This module implements the set data structure, given a total ordering
function over the set elements. All operations over sets
are purely applicative (no side-effects).
The implementation uses balanced binary trees, and is therefore
reasonably efficient: insertion and membership take time
logarithmic in the size of the set, for instance.
*)
type 'a set
(** The type of sets. *)
val empty: ('a -> 'a -> int) -> 'a set
(** The empty set. *)
val is_empty: 'a set -> bool
(** Test whether a set is empty or not. *)
val from_list: ('a -> 'a -> int) -> 'a list -> 'a set
val mem: 'a -> 'a set -> bool
(** [mem x s] tests whether [x] belongs to the set [s]. *)
val add: 'a -> 'a set -> 'a set
(** [add x s] returns a set containing all elements of [s],
plus [x]. If [x] was already in [s], [s] is returned unchanged. *)
val singleton: ('a -> 'a -> int) -> 'a -> 'a set
(** [singleton x] returns the one-element set containing only [x]. *)
val remove: 'a -> 'a set -> 'a set
(** [remove x s] returns a set containing all elements of [s],
except [x]. If [x] was not in [s], [s] is returned unchanged. *)
val union: 'a set -> 'a set -> 'a set
(** Set union. *)
val inter: 'a set -> 'a set -> 'a set
(** Set intersection. *)
(** Set difference. *)
val diff: 'a set -> 'a set -> 'a set
val compare: 'a set -> 'a set -> int
(** Total ordering between sets. Can be used as the ordering function
for doing sets of sets. *)
val equal: 'a set -> 'a set -> bool
(** [equal s1 s2] tests whether the sets [s1] and [s2] are
equal, that is, contain equal elements. *)
val subset: 'a set -> 'a set -> bool
(** [subset s1 s2] tests whether the set [s1] is a subset of
the set [s2]. *)
val iter: ('a -> unit) -> 'a set -> unit
(** [iter f s] applies [f] in turn to all elements of [s].
The elements of [s] are presented to [f] in increasing order
with respect to the ordering over the type of the elements. *)
val fold: ('a -> 'b -> 'b) -> 'a set -> 'b -> 'b
(** [fold f s a] computes [(f xN ... (f x2 (f x1 a))...)],
where [x1 ... xN] are the elements of [s], in increasing order. *)
val for_all: ('a -> bool) -> 'a set -> bool
(** [for_all p s] checks if all elements of the set
satisfy the predicate [p]. *)
val exists: ('a -> bool) -> 'a set -> bool
(** [exists p s] checks if at least one element of
the set satisfies the predicate [p]. *)
val filter: ('a -> bool) -> 'a set -> 'a set
(** [filter p s] returns the set of all elements in [s]
that satisfy predicate [p]. *)
val partition: ('a -> bool) -> 'a set -> 'a set * 'a set
(** [partition p s] returns a pair of sets [(s1, s2)], where
[s1] is the set of all the elements of [s] that satisfy the
predicate [p], and [s2] is the set of all the elements of
[s] that do not satisfy [p]. *)
val cardinal: 'a set -> int
(** Return the number of elements of a set. *)
val elements: 'a set -> 'a list
(** Return the list of all elements of the given set.
The returned list is sorted in increasing order with respect
to the ordering [Ord.compare], where [Ord] is the argument
given to {!Set.Make}. *)
val min_elt: 'a set -> 'a
(** Return the smallest element of the given set
(with respect to the [Ord.compare] ordering), or raise
[Not_found] if the set is empty. *)
val max_elt: 'a set -> 'a
(** Same as {!Set.S.min_elt}, but returns the largest element of the
given set. *)
val choose: 'a set -> 'a
(** Return one element of the given set, or raise [Not_found] if
the set is empty. Which element is chosen is unspecified,
but equal elements will be chosen for equal sets. *)
val split: 'a -> 'a set -> 'a set * bool * 'a set
(** [split x s] returns a triple [(l, present, r)], where
[l] is the set of elements of [s] that are
strictly less than [x];
[r] is the set of elements of [s] that are
strictly greater than [x];
[present] is [false] if [s] contains no element equal to [x],
or [true] if [s] contains an element equal to [x]. *)
val comprehension1 : ('b -> 'b -> int) -> ('a -> 'b) -> ('a -> bool) -> 'a set -> 'b set
val comprehension2 : ('c -> 'c -> int) -> ('a -> 'b -> 'c) -> ('a -> 'b -> bool) -> 'a set -> 'b set -> 'c set
val comprehension3 : ('d -> 'd -> int) -> ('a -> 'b -> 'c -> 'd) -> ('a -> 'b -> 'c -> bool) -> 'a set -> 'b set -> 'c set -> 'd set
val comprehension4 : ('e -> 'e -> int) -> ('a -> 'b -> 'c -> 'd -> 'e) -> ('a -> 'b -> 'c -> 'd -> bool) -> 'a set -> 'b set -> 'c set -> 'd set -> 'e set
val comprehension5 : ('f -> 'f -> int) -> ('a -> 'b -> 'c -> 'd -> 'e -> 'f) -> ('a -> 'b -> 'c -> 'd -> 'e -> bool) -> 'a set -> 'b set -> 'c set -> 'd set -> 'e set -> 'f set
val comprehension6 : ('g -> 'g -> int) -> ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g) -> ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> bool) -> 'a set -> 'b set -> 'c set -> 'd set -> 'e set -> 'f set -> 'g set
val comprehension7 : ('h -> 'h -> int) -> ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g -> 'h) -> ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g -> bool) -> 'a set -> 'b set -> 'c set -> 'd set -> 'e set -> 'f set -> 'g set -> 'h set
val bigunion : ('a -> 'a -> int) -> 'a set set -> 'a set
val lfp : 'a set -> ('a set -> 'a set) -> 'a set