Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

error with concatenation when converting QAT model to tflite model using EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8 #391

Open
gaikwadrahul8 opened this issue Nov 27, 2024 · 1 comment
Assignees

Comments

@gaikwadrahul8
Copy link

1. System information

  • Windows 11
  • TensorFlow installation (pip package or built from source): pip
  • TensorFlow library : 2.13

I am attempting to convert a QAT model trained with int8 weights, int16 activations to a tflite model using
tf.lite.OpsSet.EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8. Unfortunately there is an issue with
converting the model using this opset.
Minimal code to reproduce the error:

import tensorflow as tf
import tensorflow_model_optimization as tfmot

inp1 = tf.keras.Input(shape=[2,4,8], batch_size = 1,name = 'input1')
inp2 = tf.keras.Input(shape=[2,4,8], batch_size = 1,name = 'input2')
r1 =tf.keras.layers.ReLU()(inp1)
r2 = tf.keras.layers.ReLU()(inp2)
c1 = tf.keras.layers.Concatenate(axis = -1)([r1,r2])

scheme_16_8 = tfmot.quantization.keras.experimental.default_n_bit.DefaultNBitQuantizeScheme(
    disable_per_axis=False, num_bits_weight=8, num_bits_activation=16)

test_model = tf.keras.Model(inputs=[inp1, inp2], outputs=c1)
annotated_model = tf.keras.models.clone_model(
        test_model,      
    )
ann_model = tfmot.quantization.keras.quantize_annotate_model(annotated_model)
q_model = tfmot.quantization.keras.quantize_apply(ann_model, scheme = scheme_16_8)

converter = tf.lite.TFLiteConverter.from_keras_model(q_model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_ops = [tf.lite.OpsSet.EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8]#tf.lite.OpsSet.TFLITE_BUILTINS]
#converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
quantized_tflite_model = converter.convert()

This yields the following error:

---------------------------------------------------------------------------
ConverterError                            Traceback (most recent call last)
Cell In[11], line 5
      3 converter.target_spec.supported_ops = [tf.lite.OpsSet.EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8]#tf.lite.OpsSet.TFLITE_BUILTINS]
      4 #converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
----> 5 quantized_tflite_model = converter.convert()
      7 file_name = 'test_model.tflite'
      9     # Save the model.

File ~\.conda\envs\tf212\lib\site-packages\tensorflow\lite\python\lite.py:962, in _export_metrics.<locals>.wrapper(self, *args, **kwargs)
    959 @functools.wraps(convert_func)
    960 def wrapper(self, *args, **kwargs):
    961   # pylint: disable=protected-access
--> 962   return self._convert_and_export_metrics(convert_func, *args, **kwargs)

File ~\.conda\envs\tf212\lib\site-packages\tensorflow\lite\python\lite.py:940, in TFLiteConverterBase._convert_and_export_metrics(self, convert_func, *args, **kwargs)
    938 self._save_conversion_params_metric()
    939 start_time = time.process_time()
--> 940 result = convert_func(self, *args, **kwargs)
    941 elapsed_time_ms = (time.process_time() - start_time) * 1000
    942 if result:

File ~\.conda\envs\tf212\lib\site-packages\tensorflow\lite\python\lite.py:1373, in TFLiteKerasModelConverterV2.convert(self)
   1360 @_export_metrics
   1361 def convert(self):
   1362   """Converts a keras model based on instance variables.
   1363 
   1364   Returns:
   (...)
   1371       Invalid quantization parameters.
   1372   """
-> 1373   saved_model_convert_result = self._convert_as_saved_model()
   1374   if saved_model_convert_result:
   1375     return saved_model_convert_result

File ~\.conda\envs\tf212\lib\site-packages\tensorflow\lite\python\lite.py:1355, in TFLiteKerasModelConverterV2._convert_as_saved_model(self)
   1352   graph_def, input_tensors, output_tensors = (
   1353       self._convert_keras_to_saved_model(temp_dir))
   1354   if self.saved_model_dir:
-> 1355     return super(TFLiteKerasModelConverterV2,
   1356                  self).convert(graph_def, input_tensors, output_tensors)
   1357 finally:
   1358   shutil.rmtree(temp_dir, True)

File ~\.conda\envs\tf212\lib\site-packages\tensorflow\lite\python\lite.py:1166, in TFLiteConverterBaseV2.convert(self, graph_def, input_tensors, output_tensors)
   1161   logging.info("Using new converter: If you encounter a problem "
   1162                "please file a bug. You can opt-out "
   1163                "by setting experimental_new_converter=False")
   1165 # Converts model.
-> 1166 result = _convert_graphdef(
   1167     input_data=graph_def,
   1168     input_tensors=input_tensors,
   1169     output_tensors=output_tensors,
   1170     **converter_kwargs)
   1172 return self._optimize_tflite_model(
   1173     result, self._quant_mode, quant_io=self.experimental_new_quantizer)

File ~\.conda\envs\tf212\lib\site-packages\tensorflow\lite\python\convert_phase.py:212, in convert_phase.<locals>.actual_decorator.<locals>.wrapper(*args, **kwargs)
    210   else:
    211     report_error_message(str(converter_error))
--> 212   raise converter_error from None  # Re-throws the exception.
    213 except Exception as error:
    214   report_error_message(str(error))

File ~\.conda\envs\tf212\lib\site-packages\tensorflow\lite\python\convert_phase.py:205, in convert_phase.<locals>.actual_decorator.<locals>.wrapper(*args, **kwargs)
    202 @functools.wraps(func)
    203 def wrapper(*args, **kwargs):
    204   try:
--> 205     return func(*args, **kwargs)
    206   except ConverterError as converter_error:
    207     if converter_error.errors:

File ~\.conda\envs\tf212\lib\site-packages\tensorflow\lite\python\convert.py:817, in convert_graphdef(input_data, input_tensors, output_tensors, **kwargs)
    814   else:
    815     model_flags.output_arrays.append(util.get_tensor_name(output_tensor))
--> 817 data = convert(
    818     model_flags.SerializeToString(),
    819     conversion_flags.SerializeToString(),
    820     input_data.SerializeToString(),
    821     debug_info_str=debug_info.SerializeToString() if debug_info else None,
    822     enable_mlir_converter=enable_mlir_converter)
    823 return data

File ~\.conda\envs\tf212\lib\site-packages\tensorflow\lite\python\convert.py:322, in convert(model_flags_str, conversion_flags_str, input_data_str, debug_info_str, enable_mlir_converter)
    320     for error_data in _metrics_wrapper.retrieve_collected_errors():
    321       converter_error.append_error(error_data)
--> 322     raise converter_error
    324 return _run_deprecated_conversion_binary(model_flags_str,
    325                                          conversion_flags_str, input_data_str,
    326                                          debug_info_str)

ConverterError: C:\Users\derry\.conda\envs\tf212\lib\site-packages\keras\layers\merging\concatenate.py:134:0: error: 'tfl.concatenation' op operand #0 must be tensor of 32-bit float or 64-bit signless integer or 32-bit signless integer or 16-bit signless integer or 8-bit signless integer or QI8 type or QUI8 type or 8-bit unsigned integer or 1-bit signless integer values, but got 'tensor<1x2x4x8x!quant.uniform<i16:f32, 1.8310826276035706E-4>>'
<unknown>:0: note: loc(fused["StatefulPartitionedCall:", "StatefulPartitionedCall"]): called from

Doing the same process but in int8 yields no errors:

q_model_2 = tfmot.quantization.keras.quantize_apply(ann_model)

converter = tf.lite.TFLiteConverter.from_keras_model(q_model2)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
#converter.target_spec.supported_ops = [tf.lite.OpsSet.EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8]#tf.lite.OpsSet.TFLITE_BUILTINS]
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
quantized_tflite_model2 = converter.convert()
@gaikwadrahul8
Copy link
Author

This issue originally reported by @DerryFitz has been moved to this dedicated repository for ai-edge-torch to enhance issue tracking and prioritization. To ensure continuity, we have created this new issue on your behalf.

We appreciate your understanding and look forward to your continued involvement.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant