-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGeoreference travel times to worldpop and municipio - 2020-10.R
356 lines (256 loc) · 12 KB
/
Georeference travel times to worldpop and municipio - 2020-10.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# ---------- WORLDPOP ------------
#0 prep
getwd()
setwd("/Users/grace/OneDrive/Documents/R")
library(sf)
memory.limit()
#1.1 Each facility, baseline scenario, driving time and multimodal
D_mm_base <- read.csv('D_mm.csv')
P_mm_base <- read.csv('P_mm.csv')
H_mm_base <- read.csv('H_mm.csv')
P_mm_base <- P_mm_base[ , c('wid', 'X1P', 'mm1P')]
mm_base <- merge(x = D_mm_base, y = P_mm_base, by = "wid", all.x = TRUE)
H_mm_base <- H_mm_base[ , c('wid', 'X1H', 'mm1H')]
mm_base <- merge(x = mm_base, y = H_mm_base, by = "wid", all.x = TRUE)
mm_base <- mm_base[ , -c(2,6,7)] # Drop X, NN, walk_time
write.csv(mm_base, file = "mm_base.csv")
#1.2 Each facility, flood scenario, driving time and multimodal
D_mm_flood <- read.csv('D_mm_flood.csv')
P_mm_flood <- read.csv('P_mm_flood.csv')
H_mm_flood <- read.csv('H_mm_flood.csv')
P_mm_flood <- P_mm_flood[ , c('wid', 'X1P', 'mm1P')]
mm_flood <- merge(x = D_mm_flood, y = P_mm_flood, by = "wid", all.x = TRUE)
H_mm_flood <- H_mm_flood[ , c('wid', 'X1H', 'mm1H')]
mm_flood <- merge(x = mm_flood, y = H_mm_flood, by = "wid", all.x = TRUE)
mm_flood <- mm_flood[ , -c(2,6,7)] # Drop X, NN, walk_time
write.csv(mm_flood, file = "mm_flood.csv")
#1.3 Each facility, landslide scenario, driving time and multimodal
D_mm_landslide <- read.csv('D_mm_landslide.csv')
P_mm_landslide <- read.csv('P_mm_landslide.csv')
H_mm_landslide <- read.csv('H_mm_landslide.csv')
P_mm_landslide <- P_mm_landslide[ , c('wid', 'X1P', 'mm1P')]
mm_landslide <- merge(x = D_mm_landslide, y = P_mm_landslide, by = "wid", all.x = TRUE)
H_mm_landslide <- H_mm_landslide[ , c('wid', 'X1H', 'mm1H')]
mm_landslide <- merge(x = mm_landslide, y = H_mm_landslide, by = "wid", all.x = TRUE)
mm_landslide <- mm_landslide[ , -c(2,6,7)] # Drop X, NN, walk_time
write.csv(mm_landslide, file = "mm_slide.csv")
#2.1 Join baseline data to georeferenced file
wpop <- st_read('wpop3wgs84.shp')
base_wp <- merge(x = wpop, y = mm_base, by = "wid", all.x = TRUE)
sum(is.na(base_wp$X1D)) # Test for each travel time column to see if there was any join issue. 3893 NA values.
st_write(base_wp, "base_wp", driver="ESRI Shapefile")
#2.2 Join flooding data to georeferenced file
flood_wp <- merge(x = wpop, y = mm_flood, by = "wid", all.x = TRUE)
sum(is.na(flood_wp$X1D)) # Test for each travel time column to see if there was any join issue.
st_write(flood_wp, "flood_wp", driver="ESRI Shapefile")
#2.3 Join landslide data to georeferenced file
mm_landslide <- read.csv('mm_slide.csv')
landslide_wp <- merge(x = wpop, y = mm_landslide, by = "wid", all.x = TRUE)
sum(is.na(landslide_wp$mm1P)) # Test for each travel time column to see if there was any join issue. #3562 NA values.
landslide_wp <- landslide_wp[ , c('wid', 'wpop.x', 'xmid.x', 'municipio.x', 'X1D', 'mm1D', 'X1P', 'mm1P', 'X1H', 'mm1H', 'geometry')]
landslide_wp <- rename(landslide_wp, c("xmid.x"="mid"))
st_write(landslide_wp, "slide_wp", driver="ESRI Shapefile")
# ---------- MUNICIPIO ------------
# 0 prep
library(sf)
library(plyr)
#1.1 Load baseline values assigned to WorldPop points.
base_wp <- st_read('base_wp.shp')
base_wp <- rename(base_wp, c("wpop.x"="wpop"))
#1.2 Load flooding values assigned to WorldPop points.
flood_wp <- st_read('flood_wp.shp')
flood_wp <- rename(flood_wp, c("wpop.x"="wpop"))
#1.3 Load landslide values assigned to WorldPop points.
landslide_wp <- st_read('slide_wp.shp')
landslide_wp <- rename(landslide_wp, c("wpop.x"="wpop"))
#2.1 Baseline access as function of proportion of municipal population at each origin
# Dialysis
base_wp$D_mm_wp <- NA
base_wp$D_mm_wp <- with(base_wp, mm1D * wpop) # multimodal
base_wp$D_d_wp <- NA
base_wp$D_d_wp <- with(base_wp, X1D * wpop) # drive time only
# Pharmacy
base_wp$P_mm_wp <- NA
base_wp$P_mm_wp <- with(base_wp, mm1P * wpop) # multimodal
base_wp$P_d_wp <- NA
base_wp$P_d_wp <- with(base_wp, X1P * wpop) # drive time only
# Hospital
base_wp$H_mm_wp <- NA
base_wp$H_mm_wp <- with(base_wp, mm1H * wpop) # multimodal
base_wp$H_d_wp <- NA
base_wp$H_d_wp <- with(base_wp, X1H * wpop) # drive time only
#2.2 Flooding scenario access as function of proportion of municipal population at each origin
# Dialysis
flood_wp$D_mm_wp <- NA
flood_wp$D_mm_wp <- with(flood_wp, mm1D * wpop) # multimodal
flood_wp$D_d_wp <- NA
flood_wp$D_d_wp <- with(flood_wp, X1D * wpop) # drive time only
# Pharmacy
flood_wp$P_mm_wp <- NA
flood_wp$P_mm_wp <- with(flood_wp, mm1P * wpop) # multimodal
flood_wp$P_d_wp <- NA
flood_wp$P_d_wp <- with(flood_wp, X1P * wpop) # drive time only
# Hospital
flood_wp$H_mm_wp <- NA
flood_wp$H_mm_wp <- with(flood_wp, mm1H * wpop) # multimodal
flood_wp$H_d_wp <- NA
flood_wp$H_d_wp <- with(flood_wp, X1H * wpop) # drive time only
#2.2 Landslide scenario access as function of proportion of municipal population at each origin
# Dialysis
landslide_wp$D_mm_wp <- NA
landslide_wp$D_mm_wp <- with(landslide_wp, mm1D * wpop) # multimodal
landslide_wp$D_d_wp <- NA
landslide_wp$D_d_wp <- with(landslide_wp, X1D * wpop) # drive time only
# Pharmacy
landslide_wp$P_mm_wp <- NA
landslide_wp$P_mm_wp <- with(landslide_wp, mm1P * wpop) # multimodal
landslide_wp$P_d_wp <- NA
landslide_wp$P_d_wp <- with(landslide_wp, X1P * wpop) # drive time only
# Hospital
landslide_wp$H_mm_wp <- NA
landslide_wp$H_mm_wp <- with(landslide_wp, mm1H * wpop) # multimodal
landslide_wp$H_d_wp <- NA
landslide_wp$H_d_wp <- with(landslide_wp, X1H * wpop) # drive time only
# 3.1 Baseline municipal pop-weighted access rating. mun rating = (sum(accessvariable*wpop))/wpopm
wpop_m <- as.data.frame(xtabs(wpop ~ mid, base_wp))
wpop_m <- rename(wpop_m, c("Freq"="wpop_m"))
# Dialysis
D_mm_m <- as.data.frame(xtabs(D_mm_wp ~ mid, base_wp))
D_mm_m <- rename(D_mm_m, c("Freq"="D_mm_sum"))
D_mm_m <- merge(x=D_mm_m, y=wpop_m, by="mid")
D_mm_m$D_mm_m <- NA
D_mm_m$D_mm_m <- with(D_mm_m, D_mm_sum / wpop_m)
write.csv(D_mm_m, file = "D_mm_m.csv")
D_d_m <- as.data.frame(xtabs(D_d_wp ~ mid, base_wp))
D_d_m <- rename(D_d_m, c("Freq"="D_d_sum"))
D_d_m <- merge(x=D_d_m, y=wpop_m, by="mid")
D_d_m$D_d_m <- NA
D_d_m$D_d_m <- with(D_d_m, D_d_sum / wpop_m)
write.csv(D_d_m, file = "D_d_m.csv")
# Pharmacy
P_mm_m <- as.data.frame(xtabs(P_mm_wp ~ mid, base_wp))
P_mm_m <- rename(P_mm_m, c("Freq"="P_mm_sum"))
P_mm_m <- merge(x=P_mm_m, y=wpop_m, by="mid")
P_mm_m$P_mm_m <- NA
P_mm_m$P_mm_m <- with(P_mm_m, P_mm_sum / wpop_m)
write.csv(P_mm_m, file = "P_mm_m.csv")
P_d_m <- as.data.frame(xtabs(P_d_wp ~ mid, base_wp))
P_d_m <- rename(P_d_m, c("Freq"="P_d_sum"))
P_d_m <- merge(x=P_d_m, y=wpop_m, by="mid")
P_d_m$P_d_m <- NA
P_d_m$P_d_m <- with(P_d_m, P_d_sum / wpop_m)
write.csv(P_d_m, file = "P_d_m.csv")
# Hospital
H_mm_m <- as.data.frame(xtabs(H_mm_wp ~ mid, base_wp))
H_mm_m <- rename(H_mm_m, c("Freq"="H_mm_sum"))
H_mm_m <- merge(x=H_mm_m, y=wpop_m, by="mid")
H_mm_m$H_mm_m <- NA
H_mm_m$H_mm_m <- with(H_mm_m, H_mm_sum / wpop_m)
write.csv(H_mm_m, file = "H_mm_m.csv")
H_d_m <- as.data.frame(xtabs(H_d_wp ~ mid, base_wp))
H_d_m <- rename(H_d_m, c("Freq"="H_d_sum"))
H_d_m <- merge(x=H_d_m, y=wpop_m, by="mid")
H_d_m$H_d_m <- NA
H_d_m$H_d_m <- with(H_d_m, H_d_sum / wpop_m)
write.csv(H_d_m, file = "H_d_m.csv")
# 3.2 Flooding municipal pop-weighted access rating. mun rating = (sum(accessvariable*wpop))/wpopm
# Dialysis
D_mm_m <- as.data.frame(xtabs(D_mm_wp ~ mid, flood_wp))
D_mm_m <- rename(D_mm_m, c("Freq"="D_mm_sum"))
D_mm_m <- merge(x=D_mm_m, y=wpop_m, by="mid")
D_mm_m$D_mm_m <- NA
D_mm_m$D_mm_m <- with(D_mm_m, D_mm_sum / wpop_m)
write.csv(D_mm_m, file = "D_fl_mm_m.csv")
D_d_m <- as.data.frame(xtabs(D_d_wp ~ mid, flood_wp))
D_d_m <- rename(D_d_m, c("Freq"="D_d_sum"))
D_d_m <- merge(x=D_d_m, y=wpop_m, by="mid")
D_d_m$D_d_m <- NA
D_d_m$D_d_m <- with(D_d_m, D_d_sum / wpop_m)
write.csv(D_d_m, file = "D_fl_d_m.csv")
# Pharmacy
P_mm_m <- as.data.frame(xtabs(P_mm_wp ~ mid, flood_wp))
P_mm_m <- rename(P_mm_m, c("Freq"="P_mm_sum"))
P_mm_m <- merge(x=P_mm_m, y=wpop_m, by="mid")
P_mm_m$P_mm_m <- NA
P_mm_m$P_mm_m <- with(P_mm_m, P_mm_sum / wpop_m)
write.csv(P_mm_m, file = "P_fl_mm_m.csv")
P_d_m <- as.data.frame(xtabs(P_d_wp ~ mid, flood_wp))
P_d_m <- rename(P_d_m, c("Freq"="P_d_sum"))
P_d_m <- merge(x=P_d_m, y=wpop_m, by="mid")
P_d_m$P_d_m <- NA
P_d_m$P_d_m <- with(P_d_m, P_d_sum / wpop_m)
write.csv(P_d_m, file = "P_fl_d_m.csv")
# Hospital
H_mm_m <- as.data.frame(xtabs(H_mm_wp ~ mid, flood_wp))
H_mm_m <- rename(H_mm_m, c("Freq"="H_mm_sum"))
H_mm_m <- merge(x=H_mm_m, y=wpop_m, by="mid")
H_mm_m$H_mm_m <- NA
H_mm_m$H_mm_m <- with(H_mm_m, H_mm_sum / wpop_m)
write.csv(H_mm_m, file = "H_fl_mm_m.csv")
H_d_m <- as.data.frame(xtabs(H_d_wp ~ mid, flood_wp))
H_d_m <- rename(H_d_m, c("Freq"="H_d_sum"))
H_d_m <- merge(x=H_d_m, y=wpop_m, by="mid")
H_d_m$H_d_m <- NA
H_d_m$H_d_m <- with(H_d_m, H_d_sum / wpop_m)
write.csv(H_d_m, file = "H_fl_d_m.csv")
# 3.3 Landslide municipal pop-weighted access rating. mun rating = (sum(accessvariable*wpop))/wpopm
# Dialysis
D_mm_m <- as.data.frame(xtabs(D_mm_wp ~ mid, landslide_wp))
D_mm_m <- rename(D_mm_m, c("Freq"="D_mm_sum"))
D_mm_m <- merge(x=D_mm_m, y=wpop_m, by="mid")
D_mm_m$D_mm_m <- NA
D_mm_m$D_mm_m <- with(D_mm_m, D_mm_sum / wpop_m)
write.csv(D_mm_m, file = "D_sl_mm_m.csv")
D_d_m <- as.data.frame(xtabs(D_d_wp ~ mid, landslide_wp))
D_d_m <- rename(D_d_m, c("Freq"="D_d_sum"))
D_d_m <- merge(x=D_d_m, y=wpop_m, by="mid")
D_d_m$D_d_m <- NA
D_d_m$D_d_m <- with(D_d_m, D_d_sum / wpop_m)
write.csv(D_d_m, file = "D_sl_d_m.csv")
# Pharmacy
P_mm_m <- as.data.frame(xtabs(P_mm_wp ~ mid, landslide_wp))
P_mm_m <- rename(P_mm_m, c("Freq"="P_mm_sum"))
P_mm_m <- merge(x=P_mm_m, y=wpop_m, by="mid")
P_mm_m$P_mm_m <- NA
P_mm_m$P_mm_m <- with(P_mm_m, P_mm_sum / wpop_m)
write.csv(P_mm_m, file = "P_sl_mm_m.csv")
P_d_m <- as.data.frame(xtabs(P_d_wp ~ mid, landslide_wp))
P_d_m <- rename(P_d_m, c("Freq"="P_d_sum"))
P_d_m <- merge(x=P_d_m, y=wpop_m, by="mid")
P_d_m$P_d_m <- NA
P_d_m$P_d_m <- with(P_d_m, P_d_sum / wpop_m)
write.csv(P_d_m, file = "P_sl_d_m.csv")
# Hospital
H_mm_m <- as.data.frame(xtabs(H_mm_wp ~ mid, landslide_wp))
H_mm_m <- rename(H_mm_m, c("Freq"="H_mm_sum"))
H_mm_m <- merge(x=H_mm_m, y=wpop_m, by="mid")
H_mm_m$H_mm_m <- NA
H_mm_m$H_mm_m <- with(H_mm_m, H_mm_sum / wpop_m)
write.csv(H_mm_m, file = "H_sl_mm_m.csv")
H_d_m <- as.data.frame(xtabs(H_d_wp ~ mid, landslide_wp))
H_d_m <- rename(H_d_m, c("Freq"="H_d_sum"))
H_d_m <- merge(x=H_d_m, y=wpop_m, by="mid")
H_d_m$H_d_m <- NA
H_d_m$H_d_m <- with(H_d_m, H_d_sum / wpop_m)
write.csv(H_d_m, file = "H_sl_d_m.csv")
# 4.1 Baseline combine to one file.
base_mm_m = Reduce(function(x, y) merge(x, y, by="mid", all=TRUE), list(D_mm_m, H_mm_m, P_mm_m))
base_mm_m <- base_mm_m[ , c('mid', 'D_mm_m', 'H_mm_m', 'P_mm_m', 'wpop_m')]
write.csv(base_mm_m, file = "base_mm_m.csv")
base_d_m = Reduce(function(x, y) merge(x, y, by="mid", all=TRUE), list(D_d_m, H_d_m, P_d_m))
base_d_m <- base_d_m[ , c('mid', 'D_d_m', 'H_d_m', 'P_d_m', 'wpop_m')]
write.csv(base_d_m, file = "base_d_m.csv")
# 4.2 Flooding combine to one file.
flood_mm_m = Reduce(function(x, y) merge(x, y, by="mid", all=TRUE), list(D_mm_m, H_mm_m, P_mm_m))
flood_mm_m <- flood_mm_m[ , c('mid', 'D_mm_m', 'H_mm_m', 'P_mm_m', 'wpop_m')]
write.csv(flood_mm_m, file = "flood_mm_m.csv")
flood_d_m = Reduce(function(x, y) merge(x, y, by="mid", all=TRUE), list(D_d_m, H_d_m, P_d_m))
flood_d_m <- flood_d_m[ , c('mid', 'D_d_m', 'H_d_m', 'P_d_m', 'wpop_m')]
write.csv(flood_d_m, file = "flood_d_m.csv")
# 4.3 Landslide combine to one file.
landslide_mm_m = Reduce(function(x, y) merge(x, y, by="mid", all=TRUE), list(D_mm_m, H_mm_m, P_mm_m))
landslide_mm_m <- landslide_mm_m[ , c('mid', 'D_mm_m', 'H_mm_m', 'P_mm_m', 'wpop_m')]
write.csv(landslide_mm_m, file = "slide_mm_m.csv")
landslide_d_m = Reduce(function(x, y) merge(x, y, by="mid", all=TRUE), list(D_d_m, H_d_m, P_d_m))
landslide_d_m <- landslide_d_m[ , c('mid', 'D_d_m', 'H_d_m', 'P_d_m', 'wpop_m')]
write.csv(landslide_d_m, file = "slide_d_m.csv")