-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplot_qualprofile.py
executable file
·131 lines (111 loc) · 4.21 KB
/
plot_qualprofile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/env python
#
# Plot quality profile(s), as output from `qualprofile'.
#
# Copyright (c) 2018 Graham Gower <[email protected]>
#
# Permission to use, copy, modify, and distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
from __future__ import print_function
import sys
import os.path
import matplotlib
matplotlib.use('Agg') # don't try to use $DISPLAY
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.gridspec as gridspec
import numpy as np
def parse_qualprofile(fn):
V = []
i = 0
with open(fn) as f:
for line in f:
line = line.rstrip()
if not line or line[0] == "#":
continue
if line.startswith("MEAN"):
X = map(float, line.split()[1:])
Sigma = np.zeros([len(X),len(X)])
elif line.startswith("COV"):
Si = map(float, line.split()[1:])
Sigma[i,:len(Si)] = Si
V.append(Si[-1])
i += 1
if len(X) != len(V):
raise Exception("{}: MEAN and COV length mismatch".format(fn))
return np.array(X), np.array(V), Sigma
def ribbonplot(ax, x, y, yerr, colour, label):
ax.plot(x, y, label=label, color=colour, lw=1)
ax.plot(x, y+yerr, color=colour, lw=0.5)
ax.plot(x, y-yerr, color=colour, lw=0.5)
ax.fill_between(x, y-yerr, y+yerr, color=colour, alpha=0.3)
ax.set_ylim(0,np.max(y+yerr))
if __name__ == "__main__":
if len(sys.argv) not in (3, 4):
print("{}: out.pdf profile1 [profile2]".format(sys.argv[0]), file=sys.stderr)
exit(1)
X1, V1, Sigma1 = parse_qualprofile(sys.argv[2])
fn1 = os.path.basename(sys.argv[2])
if len(sys.argv) == 4:
X2, V2, Sigma2 = parse_qualprofile(sys.argv[3])
fn2 = os.path.basename(sys.argv[3])
else:
X2 = V2 = Sigma2 = fn2 = None
plot_file = sys.argv[1]
if plot_file.endswith("pdf"):
pdf = PdfPages(plot_file)
fig_w, fig_h = plt.figaspect(9.0/16.0)
scale = 1
fig1 = plt.figure(figsize=(scale*fig_w, scale*fig_h))
gs1 = gridspec.GridSpec(1, 1)
ax1 = fig1.add_subplot(gs1[0])
prop_cycle = plt.rcParams['axes.prop_cycle']
colors = prop_cycle.by_key()['color']
h = np.arange(1,len(X1)+1)
ribbonplot(ax1, h, X1, np.sqrt(V1), colors[0], fn1)
if X2 is not None:
ribbonplot(ax1, h, X2, np.sqrt(V2), colors[1], fn2)
ax1.set_xlabel("Position in read")
ax1.set_ylabel("Qual score")
ax1.legend()
plt.tight_layout()
if plot_file.endswith("pdf"):
pdf.savefig(figure=fig1)
else:
plt.savefig(plot_file[:-4]+"-1"+plot_file[-4:])
# next page
fig2 = plt.figure(figsize=(scale*fig_w, scale*fig_h))
gs1 = gridspec.GridSpec(1, 1)
ax1 = fig2.add_subplot(gs1[0])
im = ax1.imshow(Sigma1, cmap='magma')
ax1.figure.colorbar(im, ax=ax1)
ax1.set_title("Covariance matrix ({})".format(fn1))
plt.tight_layout()
if plot_file.endswith("pdf"):
pdf.savefig(figure=fig2)
else:
plt.savefig(plot_file[:-4]+"-2"+plot_file[-4:])
if Sigma2 is not None:
# next page
fig3 = plt.figure(figsize=(scale*fig_w, scale*fig_h))
gs1 = gridspec.GridSpec(1, 1)
ax1 = fig3.add_subplot(gs1[0])
im = ax1.imshow(Sigma2, cmap='magma')
ax1.figure.colorbar(im, ax=ax1)
ax1.set_title("Covariance matrix ({})".format(fn2))
plt.tight_layout()
if plot_file.endswith("pdf"):
pdf.savefig(figure=fig3)
else:
plt.savefig(plot_file[:-4]+"-3"+plot_file[-4:])
if plot_file.endswith("pdf"):
pdf.close()