Skip to content

Latest commit

 

History

History
241 lines (196 loc) · 7.44 KB

README.md

File metadata and controls

241 lines (196 loc) · 7.44 KB

Axibase Time-Series Database Client for Python

The Axibase Time-Series Database API Client for Python enables developers to easily read and write statistics and metadata from Axibase Time-Series Database.

API documentation
PyPI
Client documentation

Installation

Install atsd_client with pip

pip install atsd_client

or clone GitHub repository and run

python setup.py install

Usage

###Connecting to ATSD

To retrieve data from the Axibase Time-Series Database (ATSD), establish a connection with atsd_client module as follows:

    >>> import atsd_client
    >>> from atsd_client import services, models
    >>>
    >>> conn = atsd_client.connect()

###Initializing the Service

The Service implements a set of methods for interacting with a particular type of objects in ATSD, for example, Series, Property, Alert objects as well as with metadata objects such as Entity, Metric, EntityGroup.

    >>> svc = services.SeriesService(conn)

###Inserting Series Values

To insert series values into ATSD initialize a Series object and populate it with timestamped values.

    >>> series = models.Series('sensor001', 'temperature')
    >>> series.add_value(3, '2015-04-14T07:03:31Z')
    >>>
    >>> svc.insert_series(series)

add version information with an optional version argument

    >>> series.add_value(3, '2015-04-14T07:03:31Z', version={'source': 'manual'})

###Querying Series Values

When querying series values from ATSD you need to specify metric, entity, as well as start and end time. The retrieve_series method returns a list of Series objects, which you can unpack using series, = svc.retrieve_series function.

    >>> import time
    >>>
    >>> query = models.SeriesQuery('sensor001', 'temperature')
    >>> now = int(time.time() * 1000)  # current time in unix milliseconds
    >>> query.endTime = now
    >>> query.startTime = now - 12 * 60 * 60 * 1000  # query data for the last 12 hours
    >>>
    >>> series, = svc.retrieve_series(query)
    >>>
    >>> print(series)
    2015-11-19T12:05:44Z          2.0
    2015-11-19T12:08:19Z          2.0
    2015-11-19T12:08:19Z         34.0
    2015-11-19T12:08:19Z          3.0
    2015-11-19T12:15:44Z          4.0
    2015-11-19T14:34:36Z         15.0
    2015-11-19T15:20:07Z         36.0
    2015-11-19T15:20:33Z         11.0
    2015-11-19T15:20:55Z         40.0
    2015-11-19T15:21:13Z         45.0
    ...
    2015-11-19T16:20:17Z         45.0
    2015-11-19T16:46:10Z         55.0
    2015-11-19T17:24:34Z         62.0
    2015-11-19T17:38:14Z         42.0
    2015-11-19T18:38:58Z          nan
    2015-11-19T18:43:58Z         14.0
    2015-11-20T09:42:02Z         24.0
    2015-11-20T10:36:03Z         35.0
    2015-11-20T10:49:53Z         11.0
    2015-11-20T11:09:06Z         33.0
    metric: temperature
    entity: sensor001
    aggregate: {u'type': u'DETAIL'}
    type: HISTORY

Alternatively you can specify startTime and endTime properties using the built-in datetime object

    >>> from datetime import datetime
    >>> from datetime import timedelta
    >>>
    >>> query.endTime = datetime.now()
    >>> query.startTime = query.endTime - timedelta(hours=12)

###Querying Versioned Series Values

To fetch series values with version information add query.versioned = True

    >>> import time
    >>>
    >>> query = models.SeriesQuery('sensor001', 'temperature')
    >>> now = int(time.time() * 1000)  # current time in unix milliseconds
    >>> query.versioned = True
    >>> query.endTime = now
    >>> query.startTime = now - 12 * 60 * 60 * 1000  # query data for the last 12 hours
    >>>
    >>> series, = svc.retrieve_series(query)
    >>> series.sort(key=lambda sample: sample['version']['t'])
    >>> print(series)
               timestamp        value   version_source    version_status        version_time
    2015-11-19T12:05:44Z          2.0        gateway-1               OK 2015-11-19T12:14:32Z
    2015-11-19T12:08:19Z          2.0        gateway-1               OK 2015-11-19T12:09:59Z
    2015-11-19T12:08:19Z         34.0        gateway-1               OK 2015-11-19T12:10:27Z
    2015-11-19T12:08:19Z          3.0        gateway-1               OK 2015-11-19T12:12:58Z
    2015-11-19T12:15:44Z          4.0        gateway-1               OK 2015-11-19T12:15:56Z
    2015-11-19T14:34:36Z         15.0        gateway-1               OK 2015-11-19T14:35:54Z
    2015-11-19T15:20:07Z         36.0        gateway-1               OK 2015-11-19T15:20:06Z
    2015-11-19T15:20:33Z         11.0        gateway-1               OK 2015-11-19T15:20:32Z
    2015-11-19T15:20:55Z         40.0        gateway-1               OK 2015-11-19T15:20:53Z
    2015-11-19T15:21:13Z         45.0        gateway-1               OK 2015-11-19T15:21:12Z
    ...
    2015-11-19T16:46:10Z         55.0        gateway-1               OK 2015-11-19T16:46:11Z
    2015-11-19T17:24:34Z         62.0        gateway-1               OK 2015-11-19T17:24:35Z
    2015-11-19T17:38:14Z         42.0        gateway-1               OK 2015-11-19T17:38:15Z
    2015-11-19T18:38:58Z       1094.0        gateway-1               OK 2015-11-19T18:38:59Z
    2015-11-19T18:43:58Z         14.0        gateway-1               OK 2015-11-19T18:43:59Z
    2015-11-20T09:42:02Z         24.0        gateway-1               OK 2015-11-20T09:42:03Z
    2015-11-20T10:36:03Z         35.0        gateway-1               OK 2015-11-20T10:36:05Z
    2015-11-20T10:49:53Z         11.0        gateway-1               OK 2015-11-20T10:49:54Z
    2015-11-20T11:09:06Z         33.0        gateway-1               OK 2015-11-20T11:09:39Z
    2015-11-19T18:38:58Z          nan      form/manual               OK 2015-11-20T18:39:43Z
    metric: temperature
    entity: sensor001
    aggregate: {u'type': u'DETAIL'}
    type: HISTORY

###Exploring Results

In order to consume the Series object in [pandas, a Python data analysis toolkit] (http://pandas.pydata.org/), you can utilize the built-in to_pandas_series() and from_pandas_series() methods.

    >>> ts = series.to_pandas_series()
    >>> type(ts.index)
    <class 'pandas.tseries.index.DatetimeIndex'>
    >>> print(s)
    2015-04-10 17:22:24.048000    11
    2015-04-10 17:23:14.893000    31
    2015-04-10 17:24:49.058000     7
    2015-04-10 17:25:15.567000    22
    2015-04-13 14:00:49.285000     9
    2015-04-13 15:00:38            3

###Graphing Results

To plot series with matplotlib use the built-in plot() method

    >>> import matplotlib.pyplot as plt
    >>> series.plot()
    >>> plt.show()

Implemented Methods

Data API

  • Series
    • Query
    • Insert
  • Properties
    • Query
    • Insert
    • Batch
  • Alerts
    • Query
    • Update
    • History Query

Meta API

  • Metrics
    • List
    • Get
    • Create or replace
    • Update
    • Delete
    • Entities and tags
  • Entities
    • List
    • Get
    • Create or replace
    • Update
    • Delete
  • Entity Group
    • List
    • Get
    • Create or replace
    • Update
    • Delete
    • Get entities
    • Add entities
    • Set entities
    • Delete entities