diff --git a/Telco_Churn_Feature_Engineering.py b/Telco_Churn_Feature_Engineering.py index 5485343..8256eb7 100644 --- a/Telco_Churn_Feature_Engineering.py +++ b/Telco_Churn_Feature_Engineering.py @@ -409,8 +409,6 @@ def cat_summary(dataframe,col_name): df.groupby("INT_SEC_SERV_GENDER").agg({"Churn": ["mean","count"]}) - - ############################################### # * 2.3.Processing Encoding and One-Hot Encoding ############################################### @@ -437,7 +435,6 @@ def one_hot_encoder(dataframe, categorical_cols, drop_first=True): ohe_cols = [col for col in df.columns if 30 >= df[col].nunique() > 2] df = one_hot_encoder(df, ohe_cols) - df.head() ############################################### @@ -461,4 +458,4 @@ def one_hot_encoder(dataframe, categorical_cols, drop_first=True): from sklearn.ensemble import RandomForestClassifier rf_model = RandomForestClassifier(random_state=46).fit(X_train, y_train) y_pred = rf_model.predict(X_test) -accuracy_score(y_pred, y_test) \ No newline at end of file +accuracy_score(y_pred, y_test)