-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
139 lines (125 loc) · 4.64 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# general imports
from os import path
import csv
import cv2
import glob
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle
from scipy.misc import toimage
import tensorflow as tf
import argparse
# allow specifying a path to input data and ouput model
parser = argparse.ArgumentParser()
parser.add_argument('-d', default='data')
parser.add_argument('-o', default='model/model.h5')
args = parser.parse_args()
# load data for X and y
with open('{}/driving_log.csv'.format(args.d)) as f_csv:
telemetry = [l for l in csv.reader(f_csv)]
# drop csv headers that may exist
telemetry = np.array(telemetry[1:])
center_im_idx = 0
left_im_idx = 1
right_im_idx = 2
steering_angle_idx = 3
def read_image_rgb(impath):
_, filename = path.split(impath)
tmp = cv2.imread('{}/IMG/{}'.format(args.d, filename))
tmp = cv2.cvtColor(tmp, cv2.COLOR_BGR2RGB)
tmp = cv2.resize(tmp, (32,32))
return np.array(tmp)
# prune data - remove % of images with steering angle within +/-epsilon
def prune(dataset, perc_drop=.5, max_epsilon=.05):
def in_epsilon(s):
return abs(float(s[steering_angle_idx])) < max_epsilon
dataset = shuffle(dataset)
mask = []
nb_max = sum(in_epsilon(x) for x in dataset) * perc_drop
nb_c = 0
for s in dataset:
if nb_c <= nb_max and in_epsilon(s):
nb_c += 1
mask.append(False)
else:
mask.append(True)
mask = np.array(mask, dtype=bool)
return dataset[mask]
p_telemetry = prune(telemetry, perc_drop=.5, max_epsilon=.02)
train_samples, validation_samples = train_test_split(p_telemetry, test_size=0.2)
# define preprocessing and augmentation to be used by generator as functions
nb_augmentations = 4
def flip(img):
return cv2.flip(img, 1)
# one real image yields itself, shift_r, shift_l, flip
# so ultimately 4 images are appended to dest_x and dest_y lists
def append_augmented(sample, dest_x, dest_y):
im_orig = read_image_rgb(sample[center_im_idx])
im_left = read_image_rgb(sample[left_im_idx])
im_right = read_image_rgb(sample[right_im_idx])
angle = float(sample[steering_angle_idx])
# flip
dest_x.append(flip(im_orig))
dest_y.append(-angle)
# left
dest_x.append(im_left)
dest_y.append(angle + .2)
# right
dest_x.append(im_right)
dest_y.append(angle - .2)
# center
dest_x.append(im_orig)
dest_y.append(angle)
# define a generator for Keras
# if augment is set to True, generator will yield more samples!
def generator(samples, batch_size=32, augment=False):
nb_samples = len(samples)
while 1:
samples = shuffle(samples)
for offset in range(0, nb_samples, batch_size):
batch = samples[offset:offset+batch_size]
batch_x_tmp = []
batch_y_tmp = []
for sample in batch:
if augment:
append_augmented(
sample,
batch_x_tmp,
batch_y_tmp,
)
else:
batch_x_tmp.append(read_image_rgb(sample[center_im_idx]))
batch_y_tmp.append(sample[steering_angle_idx])
yield (np.array(batch_x_tmp, dtype=np.float32), np.array(batch_y_tmp, dtype=np.float32))
# train the model
from keras.models import Sequential
from keras.layers import Dense, Flatten, Lambda, Dropout, Activation
from keras.layers.convolutional import Cropping2D, Conv2D
from keras.layers.pooling import MaxPooling2D
from keras.preprocessing.image import ImageDataGenerator
model = Sequential()
model.add(Cropping2D(cropping=((10,4), (0,0)), input_shape=(32,32,3)))
model.add(Lambda(lambda x: x / 127.5 - 1))
model.add(Conv2D(32, 3, 3, activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(.5))
model.add(Conv2D(32, 3, 3, activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(.5))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dense(16))
model.add(Activation('relu'))
model.add(Dense(1))
train_generator = generator(train_samples, batch_size=32, augment=True)
validation_generator = generator(validation_samples, batch_size=32)
model.compile(optimizer='adam', loss='mse')
ts_len = len(train_samples) * nb_augmentations
history_object = model.fit_generator(train_generator,
samples_per_epoch=ts_len,
nb_val_samples=len(validation_samples),
nb_epoch=5,
validation_data=validation_generator)
model.save(args.o)