forked from henrishi/bm_model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_utils.py
40 lines (34 loc) · 1.17 KB
/
model_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Utility functions for running models
import numpy as np
import pandas as pd
import torch
TRAIN_INT = 0
VAL_INT = 1
TEST_INT = 2
def parse_tvt(tvt_vector):
parse_dict = {
TRAIN_INT : 'train',
VAL_INT : 'val',
TEST_INT : 'test'
}
out = [parse_dict[x] for x in tvt_vector]
return np.array(out)
def sigmoid_np(z):
return (1. / (1. + np.exp(- z)))
# Utility function to print latent sites' quantile information.
def percentile_summary(samples):
site_stats = {}
for site_name, values in samples.items():
marginal_site = pd.DataFrame(values)
describe = marginal_site.describe(percentiles=[.05, 0.25, 0.5, 0.75, 0.95]).transpose()
site_stats[site_name] = describe[["mean", "std", "5%", "25%", "50%", "75%", "95%"]]
return site_stats
def get_df_from_np_array(np_array):
x = np.transpose(np_array)
x = pd.DataFrame(x)
x.columns = ['col_' + str(c) for c in x.columns]
return x
# assignment to training, validation, and test sets
def get_train_val_test_vector(n, train, val, test):
out = np.random.choice([TRAIN_INT, VAL_INT, TEST_INT], size = n, p = [train, val, test])
return torch.tensor(out)