forked from dzaugis/forecast_app
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCompiling_proj_data.R
96 lines (71 loc) · 3.36 KB
/
Compiling_proj_data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
### GOM data
gom_lob_proj <- read_csv("Data/gom_lob_proj.csv")
gom_lob_abun <- read_csv("Data/ASMFC.csv")
gom_landings <- read_csv("Data/GoM_lob_landings.csv")
gom_landings_yr <- gom_landings %>% group_by(Year) %>%
summarise(Landings = sum(Pounds, na.rm=TRUE)) %>%
mutate(Landings = Landings/1000000)
gom_lm <- gom_landings_yr %>%
left_join(., gom_lob_abun, by = "Year") %>% na.omit() %>%
rename("Average" = Abundance) %>%
lm(Landings ~ Average, data = .)
gom_landings_pred <- predict(gom_lm, newdata = gom_lob_proj,
interval = "prediction", level = 0.95)
gom_landings_proj <- cbind(gom_lob_proj, gom_landings_pred) %>%
rename("Landings_pred" = fit) %>%
left_join(gom_landings_yr, by = "Year") %>%
left_join(gom_lob_abun, by = "Year")
write_csv(gom_landings_proj, "Data/gom_lob_data.csv")
gom_landings_proj %>%
filter(Model == "CMIP5_RCP 8.5_mean") %>%
ggplot() +
geom_point(aes(Year, Landings), size = 3) +
geom_line(aes(Year, Landings_pred), color = "darkred", size = 2) +
geom_ribbon(aes(x = Year, ymax = upr, ymin = lwr), fill = "darkred", alpha = .1) +
theme(legend.position = c(.85,.85)) +
labs(y = "Landings (millions of pounds)") +
scale_x_continuous(limits = c(1982,2050))
gom_landings_proj %>%
filter(Model == "CMIP5_RCP 8.5_mean") %>% ggplot() +
geom_point(aes(Year, Abundance), size = 3) +
geom_line(aes(Year, Average), size = 2, color = "darkred") +
geom_ribbon(aes(x = Year, ymax = Average + Std*2, ymin = Average - Std*2), fill = "darkred", alpha = .1) +
theme(legend.position = c(.85,.85)) +
labs(y = "Population (millions of individuals)") +
scale_x_continuous(limits = c(1982,2050))
### SNE data
sne_landings <- read_csv("Data/sne_landings.csv")
sne_lob_abun <- read_csv("Data/sne_lob_abun.csv")
sne_lob_proj <- read_csv("Data/sne_lob_proj.csv")
sne_landings_yr <- sne_landings %>% group_by(Year) %>%
summarise(Landings = sum(Pounds, na.rm=TRUE)) %>%
mutate(Landings = Landings/1000000)
sne_lm <- sne_landings_yr %>%
left_join(., sne_lob_abun, by = "Year") %>% na.omit() %>%
rename("Average" = Abundance) %>%
lm(Landings ~ Average, data = .)
sne_landings_pred <- predict(sne_lm, newdata = sne_lob_proj,
interval = "prediction", level = 0.95)
sne_landings_proj <- cbind(sne_lob_proj, sne_landings_pred) %>%
rename("Landings_pred" = fit) %>%
left_join(sne_landings_yr, by = "Year") %>%
left_join(sne_lob_abun, by = "Year") %>%
mutate(Landings)
write_csv(sne_landings_proj, "Data/sne_lob_data.csv")
sne_landings_proj %>%
filter(Model == "CMIP5_RCP 8.5_mean") %>%
ggplot() +
geom_point(aes(Year, Landings), size = 3) +
geom_line(aes(Year, Landings_pred), color = "darkred", size = 2) +
geom_ribbon(aes(x = Year, ymax = upr, ymin = lwr), fill = "darkred", alpha = .1) +
theme(legend.position = c(.85,.85)) +
labs(y = "Landings (millions of pounds)") +
scale_x_continuous(limits = c(1982,2050))
sne_landings_proj %>%
filter(Model == "CMIP5_RCP 8.5_mean") %>% ggplot() +
geom_point(aes(Year, Abundance), size = 3) +
geom_line(aes(Year, Average), size = 2, color = "darkred") +
geom_ribbon(aes(x = Year, ymax = Average + Std*2, ymin = Average - Std*2), fill = "darkred", alpha = .1) +
theme(legend.position = c(.85,.85)) +
labs(y = "Population (millions of individuals)") +
scale_x_continuous(limits = c(1982,2050))