-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_keras.py
49 lines (40 loc) · 1.37 KB
/
test_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
"""
Source: https://keras.io/examples/mnist_mlp/
Project: MLP by keras.io
"""
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, LeakyReLU
from keras.optimizers import RMSprop
batch_size = 64
num_classes = 10
epochs = 10
# loading MNIST Digits
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
# making the model
model = Sequential()
model.add(Dense(128, activation=LeakyReLU(alpha = 0.1), input_shape=(784,)))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(lr = 0.01),
metrics=['accuracy'])
# tarining
history = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1)
# evaluating
score = model.evaluate(x_test, y_test, verbose=0)
print('Test accuracy:', score[1])