-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrun.sh
53 lines (44 loc) · 2.07 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# In this example, we show how to run our model on the ACDC dataset, available under the folder ${dpath}. Results will
# be saved under the folder ${res_dir}. You can monitor the training process running in your bash the command:
# tensorboard --logdir=results/${dset_name}/graphs , and then navigating to the localhost in your browser.
# In this example, we will train the model using 50% of the annotated data. Refer to `data_interface/utils_acdc/split_data`
# for more details on the training volumes. Finally, we test on the ADCD testing volumes.
dpath='DATA/ACDC'
res_dir='.'
dset_name='acdc'
# Flag for CUDA_VISIBLE_DEVICE:
CUDA_VD=0
for run_id_and_path in \
'WEAK_ACDC_MultiscaleAAGs_224x224 model'
do
# shellcheck disable=SC2086
set -- ${run_id_and_path}
run_id=$1
path=$2
for perc in 'perc50'
do for split in 'split0'
do echo "${run_id}"_${perc}_${split}
python -m train --RUN_ID="${run_id}"_${perc}_${split} \
--n_epochs=450 \
--CUDA_VISIBLE_DEVICE=${CUDA_VD} \
--data_path=${dpath} \
--experiment="${path}" \
--dataset_name=${dset_name} \
--verbose=True \
--results_dir=${res_dir}\
--n_sup_vols=${perc} \
--split_number=${split}
data_path_testing='DATA/ACDC_testing'
python -m test_on_acdc_test_set \
--RUN_ID="${run_id}"_${perc}_${split} \
--CUDA_VISIBLE_DEVICE=${CUDA_VD} \
--data_path=${data_path_testing} \
--experiment="${path}" \
--dataset_name=${dset_name} \
--verbose=False \
--results_dir=${res_dir}\
--n_sup_vols=${perc} \
--split_number=${split}
done
done
done