-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
executable file
·55 lines (44 loc) · 1.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Copyright 2019 Gabriele Valvano
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tensorflow as tf
tf.random.set_random_seed(1234)
import numpy as np
np.random.seed(1234)
import random
random.seed(1234)
tf.logging.set_verbosity(tf.logging.ERROR)
import time
import config
import importlib
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
config.define_flags()
# noinspection PyUnresolvedReferences
FLAGS = tf.app.flags.FLAGS
def parse_model_type():
""" Import the correct model for the experiments """
experiment = FLAGS.experiment
dataset_name = FLAGS.dataset_name
model = importlib.import_module('experiments.{0}.{1}'.format(dataset_name, experiment)).Model()
return model
def main(_):
# import the correct model for the experiment
model = parse_model_type()
model.build()
start_time = time.time()
model.train(n_epochs=FLAGS.n_epochs)
delta_t = time.time() - start_time
print('\nTook: {0:.3f} hours'.format(delta_t/3600))
# parses flags and calls the `main` function above
if __name__ == '__main__':
tf.app.run()