-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexemplars.py
193 lines (137 loc) · 5.58 KB
/
exemplars.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Copyright (c) 2012 Stellenbosch University, 2012
# This source code is released under the Academic Free License 3.0
# See https://github.com/gvrooyen/SocialLearning/blob/master/LICENSE for the full text of the license.
# Author: G-J van Rooyen <[email protected]>
"""
This module contains some examplary state graphs, that are likely to give good initial results when
simulated. These are intended to be used to seed the initial genetic programming population.
"""
import traits
def BifurcateDiscrete():
self_traits = {}
self_traits['PioneeringBi'] = traits.PioneeringBi.PioneeringBi()
self_traits['PioneeringBi'].N_rounds = 3
self_traits['Specialisation'] = traits.Specialisation.Specialisation()
self_traits['SpecialisationB'] = traits.SpecialisationB.SpecialisationB()
self_traits['DiscreteDistribution'] = traits.DiscreteDistribution.DiscreteDistribution()
self_traits['DiscreteDistributionB'] = traits.DiscreteDistributionB.DiscreteDistributionB()
self_traits['DiscreteDistributionC'] = traits.DiscreteDistributionC.DiscreteDistributionC()
self_traits['DiscreteDistributionD'] = traits.DiscreteDistributionD.DiscreteDistributionD()
self_traits['DiscreteDistributionE'] = traits.DiscreteDistributionE.DiscreteDistributionE()
self_traits['DiscreteDistributionF'] = traits.DiscreteDistributionF.DiscreteDistributionF()
self_traits['DiscreteDistributionG'] = traits.DiscreteDistributionG.DiscreteDistributionG()
self_traits['DiscreteDistributionH'] = traits.DiscreteDistributionH.DiscreteDistributionH()
state = [('PioneeringBi', ['Specialisation', 'SpecialisationB']),
('Specialisation', ['DiscreteDistribution','DiscreteDistributionB','DiscreteDistributionC','DiscreteDistributionD']),
('SpecialisationB', ['DiscreteDistributionE','DiscreteDistributionF','DiscreteDistributionG','DiscreteDistributionH']),
('DiscreteDistribution', []),
('DiscreteDistributionB', []),
('DiscreteDistributionC', []),
('DiscreteDistributionD', []),
('DiscreteDistributionE', []),
('DiscreteDistributionF', []),
('DiscreteDistributionG', []),
('DiscreteDistributionH', []),
]
return (self_traits, state)
def Simple():
self_traits = {}
self_traits['Pioneering'] = traits.Pioneering.Pioneering()
self_traits['DiscreteDistribution'] = traits.DiscreteDistribution.DiscreteDistribution()
state = [('Pioneering', ['DiscreteDistribution']),
('DiscreteDistribution', [])
]
return (self_traits, state)
def SpecialPioneers():
self_traits = {}
self_traits['PioneeringBi'] = traits.PioneeringBi.PioneeringBi()
# Pioneers should emphasize innovation
self_traits['DiscreteDistributionB'] = traits.DiscreteDistributionB.DiscreteDistributionB()
# Non-pioneers should emphasize exploitation
self_traits['DiscreteDistributionD'] = traits.DiscreteDistributionD.DiscreteDistributionD()
state = [('PioneeringBi', ['DiscreteDistributionB', 'DiscreteDistributionD']),
('DiscreteDistributionB', []),
('DiscreteDistributionD', [])
]
return (self_traits, state)
def ContinuousProfessionalDevelopment():
"""
After the pioneering stage, pioneers immediately start exploiting their strongest act, until payoffs
drop, at which stage they go into a study phase, then back to greedy exploitation.
Non-pioneers start with a study phase, then go into greedy exploitation, and back to study as necessary.
"""
self_traits = {}
T = traits.PioneeringBi.PioneeringBi()
T.N_rounds = 14
self_traits['PioneeringBi'] = T
self_traits['ExploitGreedy'] = traits.ExploitGreedy.ExploitGreedy()
T = traits.Study.Study()
T.N_rounds = 14
T.Pi = 0.6465
T.Po = 0.2549
T.Pr = 0.6606
self_traits['Study'] = T
self_traits['ExploitGreedyB'] = traits.ExploitGreedyB.ExploitGreedyB()
T = traits.StudyB.StudyB()
T.N_rounds = 0
T.Pi = 0.1487
T.Po = 0.1435
T.Pr = 0.3003
self_traits['StudyB'] = T
state = [('PioneeringBi', ['ExploitGreedy', 'StudyB']),
('ExploitGreedy', ['Study']),
('Study', ['ExploitGreedy']),
('ExploitGreedyB', ['StudyB']),
('StudyB', ['ExploitGreedyB']),
]
return (self_traits, state)
def Beatnik():
self_traits = {}
T = traits.Pioneering.Pioneering()
T.N_rounds = 8
self_traits['Pioneering'] = T
T = traits.InnovationBeat.InnovationBeat()
T.N_Seq = 8
T.Pa = 0.4187
T.seq_A = [1, 1, 1, 1, 1, 2, 1, 1, 1, 1]
T.seq_B = [0, 0, 2, 1, 1, 1, 1, 1, 0, 2]
self_traits['InnovationBeat'] = T
state = [('Pioneering', ['InnovationBeat']),
('InnovationBeat', [])
]
return (self_traits, state)
def BeatnikInSpace():
self_traits = {}
T = traits.Pioneering.Pioneering()
T.N_rounds = 8
self_traits['Pioneering'] = T
T = traits.InnovationBeatSpatial.InnovationBeatSpatial()
T.N_Seq = 8
T.Pa = 0.4187
T.seq_A = [1, 1, 1, 1, 1, 1, 1, 1, 2, 1]
T.seq_B = [0, 1, 2, 1, 1, 1, 1, 1, 1, 1]
self_traits['InnovationBeatSpatial'] = T
T = traits.Study.Study()
T.N_rounds = 14
T.Pi = 0.6145
T.Po = 0.2549
T.Pr = 0.6606
self_traits['Study'] = T
state = [('Pioneering', ['InnovationBeatSpatial']),
('InnovationBeatSpatial', ['Study']),
('Study', ['InnovationBeatSpatial'])
]
return (self_traits, state)
def GoodReferences():
self_traits = {}
self_traits['Pioneering'] = traits.Pioneering.Pioneering()
T = traits.Reference.Reference()
T.Pr = 0.05
T.N_innovate = 1
T.threshold = 1.0
self_traits['Reference'] = T
state = [('Pioneering', ['Reference']),
('Reference', [])
]
return (self_traits, state)
exemplar_list = [BifurcateDiscrete, Simple, SpecialPioneers, ContinuousProfessionalDevelopment, Beatnik, BeatnikInSpace, GoodReferences]